...
首页> 外文期刊>Biogeosciences Discussions >On the potential vegetation feedbacks that enhance phosphorus availability insights from a process-based model linking geological and ecological timescales
【24h】

On the potential vegetation feedbacks that enhance phosphorus availability insights from a process-based model linking geological and ecological timescales

机译:关于潜在的植被反馈,从而提高基于过程的模型中的磷可用性见解,这些模型连接地质和生态时间尺度

获取原文
           

摘要

In old and heavily weathered soils, the availability of P might be so small that the primary production of plants is limited. However, plants have evolved several mechanisms to actively take up P from the soil or mine it to overcome this limitation. These mechanisms involve the active uptake of P mediated by mycorrhiza, biotic de-occlusion through root clusters, and the biotic enhancement of weathering through root exudation. The objective of this paper is to investigate how and where these processes contribute to alleviate P limitation on primary productivity. To do so, we propose a process-based model accounting for the major processes of the carbon, water, and P cycles including chemical weathering at the global scale. Implementing P limitation on biomass synthesis allows the assessment of the efficiencies of biomass production across different ecosystems. We use simulation experiments to assess the relative importance of the different uptake mechanisms to alleviate P limitation on biomass production. We find that active P uptake is an essential mechanism for sustaining P availability on long timescales, whereas biotic de-occlusion might serve as a buffer on timescales shorter than 10 000 yr. Although active P uptake is essential for reducing P losses by leaching, humid lowland soils reach P limitation after around 100 000 yr of soil evolution. Given the generalized modelling framework, our model results compare reasonably with observed or independently estimated patterns and ranges of P concentrations in soils and vegetation. Furthermore, our simulations suggest that P limitation might be an important driver of biomass production efficiency (the fraction of the gross primary productivity used for biomass growth), and that vegetation on old soils has a smaller biomass production rate when P becomes limiting. With this study, we provide a theoretical basis for investigating the responses of terrestrial ecosystems to P availability linking geological and ecological timescales under different environmental settings.
机译:在旧的和严重风化的土壤中,P的可用性可能很小,植物的主要生产是有限的。然而,植物已经演变了几种机制,以积极地占据土壤或挖掘它来克服这种限制。这些机制涉及由菌根,通过根簇的生物脱闭介导的P的活性摄取,以及通过根渗出的风化的生物增强。本文的目的是调查这些过程如何以及在初级生产率上减轻P限制的方式和位置。为此,我们提出了一种基于过程的模型,占碳,水和P周期的主要过程,包括在全球范围内的化学风化。实施对生物质合成的P限制允许评估不同生态系统的生物质产生的效率。我们使用模拟实验来评估不同摄取机制对缓解生物量生产的P限制的相对重要性。我们发现活跃的P吸收是长时间阶段维持P可用性的重要机制,而生物脱闭可能用作短于10 000年短的时间尺寸的缓冲器。虽然活性P吸收对于通过浸出减少P损失至关重要,但潮湿的低地土壤在大约100 000年的土壤进化后达到P限制。鉴于广义建模框架,我们的模型结果与土壤和植被中的观察或独立估计的模式和P浓度进行比较。此外,我们的模拟表明P限制可能是生物质生产效率的重要驾驶员(用于生物质生长的初级生产率的一小部分),并且当P变得限制时,旧土壤上的植被具有较小的生物量生产率。通过这项研究,我们为调查陆地生态系统对不同环境环境下的地质和生态时间尺度的P获取地质和生态时间表的响应提供了理论依据。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号