...
首页> 外文期刊>Geobiology >Activities and distribution of methanogenic and methane-oxidizing microbes in marine sediments from the Cascadia Margin
【24h】

Activities and distribution of methanogenic and methane-oxidizing microbes in marine sediments from the Cascadia Margin

机译:卡斯卡迪亚海缘海洋沉积物中产甲烷和甲烷氧化微生物的活动和分布

获取原文
获取原文并翻译 | 示例

摘要

We investigated methane production and oxidation and the depth distribution and phylogenetic affiliation of a functional gene for methanogenesis, methyl coenzyme M reductase subunit A (mcrA), at two sites of the Integrated Ocean Drilling Program Expedition 311. These sites, U1327 and U1329, are respectively inside and outside the area of gas hydrate distribution on the Cascadia Margin. Radiotracer experiments using 14C-labelled substrates indicated high potential methane production rates in hydrate-bearing sediments [128-223 m below seafloor (mbsf)] at U1327 and in sediments between 70 and 140 mbsf at U1329. Tracer-free experiments indicated high cumulative methane production in sediments within and below the gas hydrate layer at U1327 and in sediments below 70 mbsf at U1329. Stable tracer experiments using 13C-labelled methane showed high potential methane oxidation rates in near-surface sediments and in sediments deeper than 100 mbsf at both sites. Results of polymerase chain reaction amplification of mcrA in DNA were mostly consistent with methane production: relatively strong mcrA amplification was detected in the gas hydrate-bearing sediments at U1327, whereas at U1329, it was mainly detected in sediments from around the bottom-simulating reflector (126 mbsf). Phylogenetic analysis of mcrA separated it into four phylotype clusters: two clusters of methanogens, Methanosarcinales and Methanobacteriales, and two clusters of anaerobic methanotrophic archaea, ANME-I and ANME-II groups, supporting the activity measurement results. These results reveal that in situ methanogenesis in deep sediments probably contributes to gas hydrate formation and are inconsistent with the geochemical model that microbial methane currently being generated in shallow sediments migrates downward and contributes to the hydrate formation. At Site U1327, gas hydrates occurred in turbidite sediments, which were absent at Site U1329, suggesting that a geological setting suitable for a gas hydrate reservoir is more important for the accumulation of gas hydrate than microbiological properties.
机译:我们在综合海洋钻探计划探险311的两个地点调查了甲烷生成和氧化作用的甲烷生成,功能基因,甲基辅酶M还原酶亚基A(mcrA)的深度分布和系统发育关系。这些地点分别是U1327和U1329,卡斯卡迪亚边界上天然气水合物分布区域的内部和外部。使用14C标记底物的放射性示踪剂实验表明,U1327处含水合物的沉积物(海床以下128-223 m(mbsf))以及U1329处70-140 mbsf的沉积物中甲烷潜在的高生产率。无示踪剂实验表明,U1327处的天然气水合物层内和下方以及U1329处的70 mbsf以下的沉积物中甲烷的累积产量很高。使用13C标记的甲烷进行的稳定示踪剂实验显示,在两个表层的近地表沉积物和深于100 mbsf的沉积物中,甲烷的潜在氧化速率都很高。 DNA中mcrA的聚合酶链反应扩增结果与甲烷产生基本一致:在U1327的含天然气水合物的沉积物中检测到相对较强的mcrA扩增,而在U1329的情况下,主要在模拟底部反射器周围的沉积物中检测到mcrA扩增。 (126 mbsf)。系统发育分析将mcrA分为四个系统型群:两个产甲烷菌群,甲烷菌和甲烷菌,以及两个厌氧甲烷营养古生菌群,AMEE-I和ANME-II,支持了活性测量结果。这些结果表明,深部沉积物中的原位甲烷生成可能有助于天然气水合物的形成,并且与地球化学模型不一致,即目前浅层沉积物中生成的微生物甲烷向下迁移并有助于水合物的形成的地球化学模型。在站点U1327处,浊水沉积物中发生了气体水合物,而在站点U1329中却没有,这表明适合于天然气水合物储层的地质环境对天然气水合物的积累比微生物学特性更为重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号