首页> 外文学位 >Tracking Sulfur Diagenesis in Methane Rich Marine Sediments on the Cascadia Margin: Comparing Sulfur Isotopes of Bulk Sediment and Chromium Reducible Sulfur
【24h】

Tracking Sulfur Diagenesis in Methane Rich Marine Sediments on the Cascadia Margin: Comparing Sulfur Isotopes of Bulk Sediment and Chromium Reducible Sulfur

机译:跟踪卡斯卡迪亚河缘甲烷富集的海洋沉积物中的硫成岩作用:散装沉积物中的硫同位素和铬还原性硫的比较

获取原文
获取原文并翻译 | 示例

摘要

Methane gas is produced in anoxic marine sediments by methanogenic bacteria and can be ephemerally stored in gas hydrate deposits, escape to the seafloor at methane seeps, and/or be consumed at depth by the anaerobic oxidation of methane (AOM). One way to examine changes in methane flux in cold seep environments through time is to identify past positions of the sulfate methane transition zone (SMTZ) where AOM results in sulfate and methane consumption and bicarbonate and hydrogen sulfide production, often resulting in the precipitation of authigenic carbonates and iron sulfides. One method to identify paleo-positons of the SMTZ is through the sulfur isotopic composition of sulfides produced by AOM, which are typically enriched in 34S relative to sediments not influenced by AOM. Traditionally, a chemical extraction technique called chromium reduction has been used to extract reduced forms of sulfur, mainly pyrite and other iron sulfides, from the sediment. This separates only reduced sulfur from sediments leaving behind sulfur bound to organic matter and from oxidized sulfur species such as barite. In this study, bulk sediment delta 34S values are compared to measured delta34S from chromium reducible sulfur (CRS) to assess the utility of using bulk sediment delta 34S measured alone to investigate paleo-diagenetic conditions in methane rich marine sediments. The upper ~25 meters of sediment at three ODP core sites (1252A, 1247B, and 1244C) from Hydrate Ridge on the central Cascadia margin are examined. In addition to bulk sediment and CRS delta34 S, total sulfur and total organic carbon were also measured. The results reveal the bulk sediment is generally more enriched in 34S, compared to the CRS, except for a few samples at Site 1247B and some larger intervals at Site 1244C. At Site 1247B the greatest weight percent of total sulfur occurred at the modern SMTZ, and at Sites 1252A and 1244C the highest weight percent of sulfur occurred above the modern SMTZ, coincident with the most enriched (heaviest) bulk sediment sulfur isotope values at these two sites. Peaks in the delta34S value of the bulk sediment and total sulfur weight percent could be due to the presence of barite, making the bulk sediment in these locations more enriched in 34S than the CRS. In the majority of the sedimentary records examined here, the intervals where the chromium reducible sulfur has a heavier delta34S composition than the bulk sediment could indicate that the sediment has experienced intense AOM, leaving the iron sulfides to form from the heaviest hydrogen sulfide. This would make the delta34S value of the bulk sediment lighter than that of the highly enriched iron sulfides. There is a positive, linear relationship between the delta34S values of the CRS and the bulk sediment, which shows that the delta34S value of the bulk sediment is strongly influenced by the sulfur isotope composition of the CRS portion of the sediment. While the bulk sediment did not have the same delta34S values as the CRS it often showed the same trends and may be helpful in assessing the extent of AOM in methane rich marine sediments. Further comparisons of the sulfur isotope composition of sedimentary iron sulfides and bulk sediment, as well as other sulfur containing species, at other locations could indicate if the relationship observed at Hydrate Ridge exists in other methane rich seafloor environments.
机译:甲烷气体是由产甲烷细菌在缺氧的海洋沉积物中产生的,可以短暂地储存在天然气水合物的沉积物中,在甲烷渗漏时逸出到海底,和/或通过甲烷的厌氧氧化(AOM)深度消耗。检查冷渗流环境中甲烷通量随时间变化的一种方法是确定硫酸盐甲烷过渡区(SMTZ)的过去位置,在该位置AOM会导致硫酸盐和甲烷消耗以及碳酸氢盐和硫化氢的产生,通常导致自生沉淀。碳酸盐和硫化铁。识别SMTZ的古正子的一种方法是通过AOM产生的硫化物的硫同位素组成,相对于不受AOM影响的沉积物,这些硫化物通常富含34S。传统上,一种称为铬还原的化学提取技术已用于从沉积物中提取还原形式的硫,主要是黄铁矿和其他硫化铁。这仅将还原的硫从沉积物中分离出来,留下与有机物结合的硫和氧化的硫物质(例如重晶石)。在这项研究中,将散装沉积物δ34S值与铬可还原硫(CRS)测得的delta34S进行了比较,以评估使用单独测得的散装沉积物δ34S来研究富含甲烷的海洋沉积物中古成岩条件的实用性。检查了卡斯卡迪亚中缘水合物山脊的三个ODP核心站点(1252A,1247B和1244C)的〜25米上部沉积物。除大量沉积物和CRS delta34 S外,还测量了总硫和总有机碳。结果表明,与CRS相比,散装沉积物通常在34S中富集更多,除了站点1247B处的一些样本和站点1244C处的较大间隔。在1247B站点,总硫的最大重量百分比发生在现代SMTZ,而在1252A和1244C站点,最高硫的百分比发生在现代SMTZ之上,这与这两个区域中最富集(最重)的堆积沉积物硫同位素值一致网站。大量沉积物的δ34S值和总硫重量百分比的峰值可能是由于重晶石的存在,使得这些位置的大量沉积物比CRS富集了34S。在这里检查的大多数沉积记录中,铬可还原硫的δ34S组成比散装沉积物重的时间间隔可能表明该沉积物经历了强烈的AOM,从而使硫化铁由最重的硫化氢形成。这将使大量沉积物的δ34S值比高度富集的硫化铁轻。 CRS的delta34S值与散装沉积物之间存在正线性关系,这表明散装沉积物的delta34S值受沉积物CRS部分的硫同位素组成强烈影响。尽管散装沉积物不具有与CRS相同的delta34S值,但它通常显示出相同的趋势,并且可能有助于评估富含甲烷的海洋沉积物中AOM的程度。在其他位置对沉积铁硫化物和散装沉积物以及其他含硫物质的硫同位素组成进行的进一步比较可以表明,在其他富含甲烷的海底环境中,在水合物山脊处观察到的关系是否存在。

著录项

  • 作者

    Turner, Sarah.;

  • 作者单位

    University of New Hampshire.;

  • 授予单位 University of New Hampshire.;
  • 学科 Marine geology.;Geochemistry.;Sedimentary geology.
  • 学位 M.S.
  • 年度 2018
  • 页码 79 p.
  • 总页数 79
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号