首页> 外文期刊>journal of clinical medicine >Prediction of Complications and Surgery Duration in Primary Total Hip Arthroplasty Using Machine Learning: The Necessity of Modified Algorithms and Specific Data
【24h】

Prediction of Complications and Surgery Duration in Primary Total Hip Arthroplasty Using Machine Learning: The Necessity of Modified Algorithms and Specific Data

机译:使用机器学习预测原发性全髋关节置换术的并发症和手术持续时间:修改算法和特定数据的必要性

获取原文
获取原文并翻译 | 示例

摘要

Background: Machine Learning (ML) in arthroplasty is becoming more popular, as it is perfectly suited for prediction models. However, results have been heterogeneous so far. We hypothesize that an accurate ML model for outcome prediction in THA must be able to compute arthroplasty-specific data. In this study, we evaluate a ML approach applying data from two German arthroplasty-specific registries to predict adverse outcomes after THA, after careful evaluations of ML algorithms, outcome and input variables by an interdisciplinary team of data scientists and surgeons. Methods: Data of 1217 cases of primary THA from a single center were derived from two German arthroplasty-specific registries between 2016 to 2019. The XGBoost algorithm was adjusted and applied. Accuracy, sensitivity, specificity and AUC were calculated. Results: For the prediction of complications, the ML algorithm achieved an accuracy of 80.3, a sensitivity of 31.0, a specificity of 89.4 and an AUC of 64.1. For the prediction of surgery duration, the ML algorithm yielded an accuracy of 81.7, a sensitivity of 58.2, a specificity of 91.6 and an AUC of 89.1. The feature importance indicated non-linear outcomes for age, height, weight and surgeon. No relevant linear correlations were found. Conclusion: The attunement of input and output data as well as the modifications of the ML algorithm permitted the development of a feasible ML model for the prediction of complications and surgery duration.
机译:背景:机器学习 (ML) 在关节置换术中变得越来越流行,因为它非常适合预测模型。然而,到目前为止,结果是异质的。我们假设用于 THA 结果预测的准确 ML 模型必须能够计算关节置换术特异性数据。在这项研究中,我们评估了一种 ML 方法,该方法应用来自两个德国关节置换术特定登记处的数据来预测 THA 后的不良结果,经过数据科学家和外科医生的跨学科团队对 ML 算法、结果和输入变量的仔细评估。方法:2016 年至 2019 年间来自单个中心的 1217 例原发性 THA 病例的数据来自两个德国关节置换术特定登记处。调整并应用了 XGBoost 算法。计算准确性、灵敏度、特异性和 AUC。结果:对于并发症的预测,ML算法的准确率为80.3%,灵敏度为31.0%,特异性为89.4%,AUC为64.1%。对于手术持续时间的预测,ML算法的准确率为81.7%,灵敏度为58.2%,特异性为91.6%,AUC为89.1%。特征重要性表明年龄、身高、体重和外科医生的非线性结局。未发现相关的线性相关性。结论:输入和输出数据的协调以及ML算法的修改允许开发一个可行的ML模型来预测并发症和手术持续时间。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号