...
首页> 外文期刊>Genome Biology >Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pH(c) in Saccharomyces cerevisiae.
【24h】

Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pH(c) in Saccharomyces cerevisiae.

机译:全基因组范围内的细胞内pH值揭示了酿酒酵母中pH(c)对细胞分裂速率的定量控制。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Because protonation affects the properties of almost all molecules in cells, cytosolic pH (pH(c)) is usually assumed to be constant. In the model organism yeast, however, pH(c) changes in response to the presence of nutrients and varies during growth. Since small changes in pH(c) can lead to major changes in metabolism, signal transduction, and phenotype, we decided to analyze pH(c) control. RESULTS: Introducing a pH-sensitive reporter protein into the yeast deletion collection allowed quantitative genome-wide analysis of pH(c) in live, growing yeast cultures. pH(c) is robust towards gene deletion; no single gene mutation led to a pH(c) of more than 0.3 units lower than that of wild type. Correct pH(c) control required not only vacuolar proton pumps, but also strongly relied on mitochondrial function. Additionally, we identified a striking relationship between pH(c) and growth rate. Careful dissection of cause and consequence revealed that pH(c) quantitatively controls growth rate. Detailed analysis of the genetic basis of this control revealed that the adequate signaling of pH(c) depended on inositol polyphosphates, a set of relatively unknown signaling molecules with exquisitely pH sensitive properties. CONCLUSIONS: While pH(c) is a very dynamic parameter in the normal life of yeast, genetically it is a tightly controlled cellular parameter. The coupling of pH(c) to growth rate is even more robust to genetic alteration. Changes in pH(c) control cell division rate in yeast, possibly as a signal. Such a signaling role of pH(c) is probable, and may be central in development and tumorigenesis.Registry Number/Name of Substance 0 (Inositol Phosphates). 0 (Proton Pumps).
机译:因为质子化影响细胞中几乎所有分子的特性,所以通常认为胞质pH(pH(c))是恒定的。然而,在模型生物酵母中,pH(c)响应营养物质的存在而变化,并在生长过程中变化。由于pH(c)的微小变化会导致代谢,信号转导和表型的重大变化,因此我们决定分析pH(c)的控制。结果:将pH敏感的报道蛋白引入酵母缺失收集物中,可以对生长中的活酵母培养物中的pH(c)进行全基因组定量分析。 pH(c)可以抵抗基因缺失;没有一个单一的基因突变导致其pH(c)比野生型低0.3个以上。正确的pH(c)控制不仅需要液泡质子泵,而且还强烈依赖于线粒体功能。此外,我们确定了pH(c)与生长速率之间的显着关系。仔细剖析因果关系表明,pH(c)定量控制生长速率。此控件的遗传基础的详细分析表明,pH(c)的适当信号转导取决于肌醇多磷酸盐,肌醇多磷酸盐是一组相对未知的具有极好的pH敏感特性的信号转导分子。结论:虽然pH(c)是酵母正常生活中非常动态的参数,但从基因上讲它是严格控制的细胞参数。 pH(c)与生长速率的耦合对于遗传改变甚至更加稳健。 pH(c)的变化可能会控制酵母中的细胞分裂速率。 pH(c)的这种信号传递作用很可能,并且可能在发育和肿瘤发生中起关键作用。登记号/物质0(肌醇磷酸)的名称。 0(质子泵)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号