首页> 外文期刊>energies >An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks
【24h】

An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks

机译:有源配电网应用的监督式机器学习方法概述

获取原文
获取原文并翻译 | 示例

摘要

Distribution grids must be regularly updated to meet the global electricity demand. Some of these updates result in fundamental changes to the structure of the grid network. Some recent changes include two-way communication infrastructure, the rapid development of distributed generations (DGs) in different forms, and the installation of smart measurement tools. In addition to other changes, these lead to distribution grid modifications, allowing more advanced features. Even though these advanced technologies enhance distribution grid performance, the operation, management, and control of active distribution networks (ADNs) have become more complicated. For example, distribution system state estimation (DSSE) calculations have been introduced as a tool to estimate the performance of distribution grids. These DSSE computations are highly dependent on data obtained from measurement devices in distribution grids. However, sufficient measurement devices are not available in ADNs due to economic constraints and various configurations of distribution grids. Thus, the modeling of pseudo-measurements using conventional and machine learning techniques from historical information in distribution grids is applied to address the lack of real measurements in ADNs. Different types of measurements (real, pseudo, and virtual measurements), alongside network parameters, are fed into model-based or data-based DSSE approaches to estimate the state variables of the distribution grid. The results obtained through DSSE should be sufficiently accurate for the appropriate management and overall performance evaluation of a distribution grid in a control center. However, distribution grids are prone to different cyberattacks, which can endanger their safe operation. One particular type of cyberattack is known as a false data injection attack (FDIA) on measurement data. Attackers try to inject false data into the measurements of nodes to falsify DSSE results. The FDIA can sometimes bypass poor traditional data-detection processes. If FDIAs cannot be identified successfully, the distribution grid's performance is degraded significantly. Currently, different machine learning applications are applied widely to model pseudo-measurements, calculate DSSE variables, and identify FDIAs on measurement data to achieve the desired distribution grid operation and performance. In this study, we present a comprehensive review investigating the use of supervised machine learning (SML) in distribution grids to enhance and improve the operation and performance of advanced distribution grids according to three perspectives: (1) pseudo-measurement generation (via short-term load forecasting); (2) DSSE calculation; and (3) FDIA detection on measurement data. This review demonstrates the importance of SML in the management of ADN operation.
机译:配电网必须定期更新,以满足全球电力需求。其中一些更新导致电网结构发生根本性变化。最近的一些变化包括双向通信基础设施、不同形式的分布式发电 (DG) 的快速发展以及智能测量工具的安装。除了其他更改外,这些更改还会导致配电网修改,从而允许更高级的功能。尽管这些先进技术提高了配电网性能,但有源配电网 (ADN) 的运营、管理和控制变得更加复杂。例如,配电网状态估计 (DSSE) 计算已被引入作为估计配电网性能的工具。这些DSSE计算高度依赖于从配电网中的测量设备获得的数据。然而,由于经济限制和配电网的各种配置,ADN中没有足够的测量设备。因此,使用传统和机器学习技术对配电网中的历史信息进行伪测量建模,以解决 ADN 中缺乏真实测量的问题。不同类型的测量值(实测量值、伪测量值和虚拟测量值)以及网络参数被输入到基于模型或基于数据的 DSSE 方法中,以估计配电网的状态变量。通过DSSE获得的结果应足够准确,以便对控制中心的配电网进行适当的管理和整体性能评估。然而,配电网容易受到不同的网络攻击,这可能会危及其安全运行。一种特殊类型的网络攻击被称为针对测量数据的虚假数据注入攻击 (FDIA)。攻击者试图将虚假数据注入节点的测量中,以伪造DSSE结果。FDIA有时可以绕过糟糕的传统数据检测流程。如果不能成功识别FDIA,配电网的性能就会大大下降。目前,不同的机器学习应用程序被广泛应用于伪测量建模、计算DSSE变量以及根据测量数据识别FDIA,以实现所需的配电网运行和性能。在这项研究中,我们从三个角度全面回顾了监督机器学习(SML)在配电网中的应用,以增强和改善先进配电网的运行和性能:(1)伪测量生成(通过短期负荷预测);(2)DSSE计算;(3)FDIA对测量数据的检测。这篇综述证明了 SML 在 ADN 运营管理中的重要性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号