...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(II)-oxidizing bacteria: Effect of pH, bicarbonate, phosphate, and humic acids
【24h】

Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(II)-oxidizing bacteria: Effect of pH, bicarbonate, phosphate, and humic acids

机译:硝酸盐还原铁(II)氧化细菌对锂铁云母和针铁矿的生物矿化作用:pH,碳酸氢根,磷酸盐和腐殖酸的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Fe(III) solid phases are the products of Fe(II) oxidation by Fe(II)-oxidizing bacteria, but the Fe(III) phases reported to form within growth experiments are, at times, poorly crystalline and therefore difficult to identify, possibly due to the presence of ligands (e.g., phosphate, carbonate) that complex iron and disrupt iron (hydr)oxide precipitation. The scope of this study was to investigate the influences of geochemical solution conditions (pH, carbonate, phosphate, humic acids) on the Fe(II) oxidation rate and Fe(III) mineralogy. Fe(III) mineral characterization was performed using ~(57)Fe-M?ssbauer spectroscopy and μ-X-ray diffraction after oxidation of dissolved Fe(II) within Mops-buffered cell suspensions of Acidovorax sp. BoFeN1, a nitrate-reducing, Fe(II)-oxidizing bacterium. Lepidocrocite (γ-FeOOH) (90%), which also forms after chemical oxidation of Fe(II) by dissolved O_2, and goethite (α-FeOOH) (10%) were produced at pH 7.0 in the absence of any strongly complexing ligands. Higher solution pH, increasing concentrations of carbonate species, and increasing concentrations of humic acids promoted goethite formation and caused little or no changes in Fe(II) oxidation rates. Phosphate species resulted in Fe(III) solids unidentifiable to our methods and significantly slowed Fe(II) oxidation rates. Our results suggest that Fe(III) mineralogy formed by bacterial Fe(II) oxidation is strongly influenced by solution chemistry, and the geochemical conditions studied here suggest lepidocrocite and goethite may coexist in aquatic environments where nitrate-reducing, Fe(II)-oxidizing bacteria are active.
机译:Fe(III)固相是被Fe(II)氧化细菌氧化的Fe(II)产物,但据报道在生长实验中形成的Fe(III)相有时结晶性较差,因此难以鉴定,可能是由于配体(例如磷酸盐,碳酸盐)的存在,这些配体会络合铁并破坏铁(氢氧化)的沉淀。本研究的范围是研究地球化学溶液条件(pH,碳酸盐,磷酸盐,腐殖酸)对Fe(II)氧化速率和Fe(III)矿物学的影响。 Fe(III)矿物表征是使用〜(57)Fe-M?ssbauer光谱和μ-X射线衍射进行的,该氧化是在Acidovorax sp。的Mops缓冲细胞悬液中氧化溶解的Fe(II)之后进行的。 BoFeN1,一种还原硝酸盐的Fe(II)氧化细菌。在溶解的O_2对Fe(II)进行化学氧化后也形成的铁云母(γ-FeOOH)(90%),在没有任何强络合配体的情况下,在pH 7.0时生成针铁矿(α-FeO​​OH)(10%)。 。较高的溶液pH值,碳酸盐种类的浓度增加以及腐殖酸浓度的增加会促进针铁矿的形成,并导致Fe(II)氧化速率几乎没有变化。磷酸盐种类导致我们方法无法确定的Fe(III)固体,并大大降低了Fe(II)的氧化速率。我们的结果表明,细菌细菌Fe(II)氧化形成的Fe(III)矿物学受到溶液化学的强烈影响,并且此处研究的地球化学条件表明,在硝酸盐还原,Fe(II)氧化的水生环境中,可能有轻铁云母和针铁矿共存。细菌活跃。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号