...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Silicate and carbonate mineral weathering in soil profiles developed on Pleistocene glacial drift (Michigan, USA): Mass balances based on soil water geochemistry
【24h】

Silicate and carbonate mineral weathering in soil profiles developed on Pleistocene glacial drift (Michigan, USA): Mass balances based on soil water geochemistry

机译:基于更新世冰川漂移(美国密歇根州)开发的土壤剖面中的硅酸盐和碳酸盐矿物风化:基于土壤水地球化学的质量平衡

获取原文
获取原文并翻译 | 示例

摘要

Geochemistry of soil, soil water, and soil gas was characterized in representative soil profiles of three Michigan watersheds. Because of differences in source regions, parent materials in the Upper Peninsula of Michigan (the Tahquamenon watershed) contain only silicates, while those in the Lower Peninsula (the Cheboygan and the Huron watersheds) have significant mixtures of silicate and carbonate minerals. These differences in soil mineralogy and climate conditions permit us to examine controls on carbonate and silicate mineral weathering rates and to better define the importance of silicate versus carbonate dissolution in the early stage of soil-water cation acquisition. Soil waters of the Tahquamenon watershed are the most dilute; solutes reflect amphibole and plagioclase dissolution along with significant contributions from atmospheric precipitation sources. Soil waters in the Cheboygan and the Huron watersheds begin their evolution as relatively dilute solutions dominated by silicate weathering in shallow carbonate-free soil horizons. Here, silicate dissolution is rapid and reaction rates dominantly are controlled by mineral abundances. In the deeper soil horizons, silicate dissolution slows down and soil-water chemistry is dominated by calcite and dolomite weathering, where solutions reach equilibrium with carbonate minerals within the soil profile. Thus, carbonate weathering intensities are dominantly controlled by annual precipitation, temperature and soil pCO2. Results of a conceptual model support these field observations, implying that dolomite and calcite are dissolving at a similar rate, and further dissolution of more soluble dolomite after calcite equilibrium produces higher dissolved inorganic carbon concentrations and a Mg2+/Ca2+ ratio of 0.4. Mass balance calculations show that overall, silicate minerals and atmospheric inputs generally contribute <10% of Ca2+ and Mg2+ in natural waters. Dolomite dissolution appears to be a major process, rivaling calcite dissolution as a control on divalent cation and inorganic carbon contents of soil waters. Furthermore, the fraction of Mg2+ derived from silicate mineral weathering is much smaller than most of the values previously estimated from riverine chemistry. (c) 2007 Elsevier Ltd. All rights reserved.
机译:在密歇根州三个流域的代表性土壤剖面中对土壤,土壤水和土壤气体的地球化学进行了表征。由于源区的差异,密歇根州上半岛(塔赫夸梅农集水区)的母体物质仅含硅酸盐,而下半岛(切博伊根和休伦河集水区)的母体物质则主要是硅酸盐和碳酸盐矿物的混合物。土壤矿物学和气候条件的这些差异使我们能够检查对碳酸盐和硅酸盐矿物风化速率的控制,并更好地定义了土壤水阳离子获取早期硅酸盐与碳酸盐溶解的重要性。 Tahquamenon流域的土壤水最稀。溶质反映了闪石和斜长石溶解以及大气降水来源的重大贡献。 Cheboygan流域和Huron流域中的土壤水开始演变,因为相对稀释的溶液以在无碳酸盐的浅层土壤中风化的硅酸盐为主。在这里,硅酸盐溶解迅速,反应速率主要受矿物丰度控制。在较深的土壤层中,硅酸盐的溶解减慢,方解石和白云石的风化作用主导了土壤-水化学作用,其中溶液与土壤剖面中的碳酸盐矿物达到平衡。因此,碳酸盐的风化强度主要受年降水量,温度和土壤pCO2的控制。概念模型的结果支持了这些现场观察,这表明白云石和方解石以相似的速率溶解,并且在方解石平衡后进一步溶解更多可溶白云石会产生更高的溶解无机碳浓度和Mg2 + / Ca2 +比为0.4。质量平衡计算表明,总体而言,硅酸盐矿物和大气输入量对天然水中的Ca2 +和Mg2 +的贡献小于10%。白云石溶解似乎是一个主要过程,可与方解石溶解相媲美,作为对土壤水中二价阳离子和无机碳含量的控制。此外,源自硅酸盐矿物风化的Mg2 +比例远小于先前根据河流化学估算的大多数值。 (c)2007 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号