...
首页> 外文期刊>Genetic epidemiology. >Comparison of approaches for machine-learning optimization of neural networks for detecting gene-gene interactions in genetic epidemiology.
【24h】

Comparison of approaches for machine-learning optimization of neural networks for detecting gene-gene interactions in genetic epidemiology.

机译:神经网络机器学习优化方法的比较,以检测遗传流行病学中的基因-基因相互作用。

获取原文
获取原文并翻译 | 示例

摘要

The detection of genotypes that predict common, complex disease is a challenge for human geneticists. The phenomenon of epistasis, or gene-gene interactions, is particularly problematic for traditional statistical techniques. Additionally, the explosion of genetic information makes exhaustive searches of multilocus combinations computationally infeasible. To address these challenges, neural networks (NN), a pattern recognition method, have been used. One limitation of the NN approach is that its success is dependent on the architecture of the network. To solve this, machine-learning approaches have been suggested to evolve the best NN architecture for a particular data set. In this study we provide a detailed technical description of the use of grammatical evolution to optimize neural networks (GENN) for use in genetic association studies. We compare the performance of GENN to that of a previous machine-learning NN application--genetic programming neural networks in both simulated and real data. We show that GENN greatly outperforms genetic programming neural networks in data sets with a large number of single nucleotide polymorphisms. Additionally, we demonstrate that GENN has high power to detect disease-risk loci in a range of high-order epistatic models. Finally, we demonstrate the scalability of the GENN method with increasing numbers of variables--as many as 500,000 single nucleotide polymorphisms.
机译:对于人类遗传学家来说,检测可预测常见,复杂疾病的基因型是一项挑战。上位现象或基因-基因相互作用对于传统的统计技术尤其成问题。另外,遗传信息的激增使得对多基因座组合的详尽搜索在计算上不可行。为了应对这些挑战,已经使用了一种模式识别方法-神经网络(NN)。 NN方法的局限性在于其成功取决于网络的体系结构。为了解决这个问题,已经提出了机器学习方法来为特定数据集发展最佳的NN体系结构。在这项研究中,我们提供了使用语法进化来优化用于遗传关联研究的神经网络(GENN)的详细技术说明。我们将GENN的性能与以前的机器学习NN应用程序的性能进行了比较-既有模拟数据也有真实数据的遗传编程神经网络。我们表明,GENN在具有大量单核苷酸多态性的数据集中大大优于遗传编程神经网络。此外,我们证明了GENN具有在一系列高阶上位模型中检测疾病风险基因座的强大能力。最后,我们证明了随着变量数量的增加(多达500,000个单核苷酸多态性),GENN方法的可扩展性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号