首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Molecular dynamics simulation study of ionic hydration and ion association in dilute and 1 molal aqueous sodium chloride solutions from ambient to supercritical conditions
【24h】

Molecular dynamics simulation study of ionic hydration and ion association in dilute and 1 molal aqueous sodium chloride solutions from ambient to supercritical conditions

机译:稀溶液和1摩尔氯化钠水溶液在环境至超临界条件下离子水合和离子缔合的分子动力学模拟研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The increasing demand for accurate equations of state of fluids under extreme conditions and the need for a detailed microscopic picture of aqueous fluids in some areas of geochemistry (e.g., mineral dissolution/precipitation kinetics) potentially make molecular dynamics (MD) simulations a powerful tool for theoretical geochemistry. We present MD simulations of infinitely dilute and 1 molal aqueous NaCl solutions that have been carried out in order to study the systematics of hydration and ion association over a wide range of conditions from ambient to supercritical and compare them to the available experimental data. In the dilute case, the hydration number of the Na~+ ion remains essentially constant around 5.5 from ambient to supercritical temperatures when the density is kept constant at 1 g cm~(-1) but decreases to below 5 along the liquid-vapor curve. In both cases, the average ion-first shell water distance decreases by about 0.03 A from ambient to near critical temperatures. The Cl~- ion shows a slight expansion of the first hydration shell by about 0.02 A from ambient to near critical temperatures. The geometric definition of the first hydration shell becomes ambiguous due to a shift of the position of the first minimum of the Cl-O radial distribution function. In the case of the 1 molal solution, the contraction of the Na~+ first hydration shell is similar to that in the dilute case whereas the hydration number decreases drastically from 4.9 to 2.8 due to strong ion association. The released waters are replaced on a near 1:1 basis by chloride ions. Polynuclear clusters as predicted by Oelkers and Helgeson (1993b) are observed in the high temperature systems. The hydration shell of the Cl~-ion shows significant deviation from the behavior in dilute systems, that is, at near vapor saturated conditions, the expansion of the hydration shell is significantly larger (0.12 A from ambient to near critical temperatures). Due to a very large shift of the first minimum and second maximum of the Cl-O radial distribution function, the proper definition of the hydration number becomes even more ambiguous then in the dilute case. The results of the present study clearly show that current empirical approaches for modeling aqueous fluids using simple electrostriction concepts do not adequately mimic the properties of the actual microscopic structure at high temperatures. For example the implementation of the g-function in the revised HKF model (Tanger and Helgeson, 1988) only partly reflects the actual changes of the hydration environment. Future successful equations of state will, therefore, have to take the fluid structure and dynamics on the molecular scale into account. The presence of polynuclear species in concentrated could be of importance for mineral dissolution kinetics.
机译:在极端条件下对流体状态精确方程的需求不断增长,并且在某些地球化学领域(例如矿物溶解/沉淀动力学)中需要详细的含水流体微观图像的需求,有可能使分子动力学(MD)模拟成为一种强大的工具,可用于理论地球化学。我们提供了无限稀溶液和1摩尔NaCl水溶液的MD模拟,以研究从环境到超临界的各种条件下的水合作用和离子缔合的系统并将其与可用的实验数据进行比较。在稀的情况下,当密度保持恒定在1 g cm〜(-1)时,Na〜+离子的水合数从环境温度到超临界温度基本上保持在5.5左右,但沿着液-气曲线下降到5以下。在这两种情况下,平均离子至第一壳层水的距离从环境温度降低到接近临界温度都降低了约0.03A。 Cl-离子表明第一水合壳从环境温度到接近临界温度略微膨胀了约0.02A。由于Cl-O径向分布函数的第一最小值的位置的偏移,第一水合壳的几何定义变得模糊。在1摩尔溶液中,Na〜+第一水合壳的收缩与稀溶液相似,而水合数由于强的离子缔合而从4.9急剧下降到2.8。释放的水几乎被氯离子以1:1取代。如Oelkers和Helgeson(1993b)所预测的,在高温系统中观察到多核簇。 Cl-离子的水合壳显示出与稀体系中行为的显着偏差,也就是说,在接近蒸汽饱和条件下,水合壳的膨胀显着更大(从环境温度到接近临界温度0.12 A)。由于Cl-O径向分布函数的第一最小值和第二最大值的非常大的偏移,因此水合数的正确定义变得比稀疏情况下更加模糊。本研究的结果清楚地表明,使用简单的电致伸缩概念对水流体进行建模的当前经验方法无法充分模拟高温下实际微观结构的特性。例如,在修订的HKF模型中执行g函数(Tanger和Helgeson,1988)仅部分反映了水化环境的实际变化。因此,未来成功的状态方程将必须考虑分子尺度上的流体结构和动力学。浓缩物中多核物质的存在对于矿物溶解动力学很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号