首页> 外文学位 >Development of Statistical Associating Fluid Theory for Aqueous Ionic Liquid Solutions by Implementing Monte Carlo Simulations and Ornstein-Zernike Integral Equation: Application to Describing Gas Hydrate Inhibition Performance of Ionic Liquids.
【24h】

Development of Statistical Associating Fluid Theory for Aqueous Ionic Liquid Solutions by Implementing Monte Carlo Simulations and Ornstein-Zernike Integral Equation: Application to Describing Gas Hydrate Inhibition Performance of Ionic Liquids.

机译:通过实现蒙特卡洛模拟和Ornstein-Zernike积分方程,发展用于离子液体水溶液的统计缔合流体理论:在描述离子液体的气体水合物抑制性能中的应用。

获取原文
获取原文并翻译 | 示例

摘要

A recent version of statistical associating fluid theory (SAFT), namely SAFT2, is coupled with the van der Waals and Platteeuw theory to study the alkane hydrate phase equilibrium conditions. The model is found to provide an accurate representation of the alkane hydrate dissociation conditions with and without inhibitors, such as salts, alcohols, as well as mixed salts and alcohol. Based on SAFT2, a heterosegmented SAFT equation of state is developed to model the thermodynamic properties of aqueous ionic liquid (IL) solutions, which is recently discovered as dual function gas hydrate inhibitors. With transferrable model parameters, the heterosegmented SAFT generally well represents the liquid density, activity coefficient, and osmotic coefficient of aqueous imidazolium IL solutions. The inhibition effects of imidazolium IL on methane hydrate is also studied by the heterosegmented SAFT and the van der Waals and Platteeuw theory. The roles of pressure, anion type, alkyl length of the cation, and IL concentration on the hydrate inhibition performance of the imidazolium ILs are well captured.;The heterosegmented SAFT is then modified to better represent the thermodynamic properties of aqueous IL solutions with the help of Monte Carlo simulation and the solutions of Ornstein-Zernike integral equation. Monte Carlo simulations are conducted on the fluid mixture of charged and neutral hard spheres to obtain its structure and excess energies, the results of which are compared with the thermodynamic properties predicted by solving Ornstein-Zernike equation with the Hypernetted Chain (HNC) and Mean Spherical Approximation (MSA) closures. A simple modification of MSA, referred to as KMSA, is proposed to accurately predict the excess energies of electrolyte system in mixture with neutral component. The KMSA improves the heterosegmented SAFT by taking the effect of neutral alkyl branches on the electrostatic interactions into consideration. Monte Carlo simulations are also conducted on flexible charged hard-sphere chain molecules, and a SAFT model which implements either a dimer or a dimer-monomer approach to account for the charged chain connectivity is proposed. With the SAFT model for charged hard-sphere chain, the cation heads and some anions of ILs are more accurately modeled as charged chains instead of charged spherical segments.;With these improvements to the heterosegmented SAFT, a more accurate representation of activity coefficient and osmotic coefficient is achieved, and the modeling of aqueous IL solutions is extended to ammonium ILs and imidazolium ILs with organic anions. The inhibition effects of ammonium ILs on methane hydrate is investigated using the improved heterosegmented SAFT coupled with the van der Waals and Platteeuw theory, which is demonstrated to be a predictive tool for the screening of effective IL based hydrate inhibitor.
机译:统计缔合流体理论(SAFT)的最新版本,即SAFT2,与范德华斯理论和Platteeuw理论相结合,研究了烷烃水合物相平衡条件。发现该模型可提供有或无抑制剂(如盐,醇以及混合盐和醇)的烷烃水合物解离条件的准确表示。基于SAFT2,建立了一个杂段SAFT状态方程,以对离子液体(IL)水溶液的热力学性质进行建模,该溶液最近被发现是双功能气体水合物抑制剂。通过可转移的模型参数,杂段SAFT通常很好地代表了咪唑鎓IL水溶液的液体密度,活度系数和渗透系数。咪唑鎓IL对甲烷水合物的抑制作用还通过杂段SAFT和范德华兹和普拉特约夫理论进行了研究。可以很好地捕捉到压力,阴离子类型,阳离子的烷基长度和IL浓度对咪唑类ILs的水合物抑制性能的作用。;然后对杂段SAFT进行修饰以更好地表示IL水溶液的热力学性质蒙特卡罗模拟的解析和Ornstein-Zernike积分方程的解。在带电和中性硬球的流体混合物上进行蒙特卡洛模拟,以获取其结构和多余的能量,并将其结果与通过使用超网链(HNC)和均值球面求解Ornstein-Zernike方程预测的热力学性质进行比较近似(MSA)闭包。提出了一种简单的MSA改进方案,称为KMSA,以准确预测与中性成分混合的电解质系统的过剩能量。通过考虑中性烷基支链对静电相互作用的影响,KMSA改进了异链SAFT。还对柔性带电硬球链分子进行了蒙特卡洛模拟,并提出了一种SAFT模型,该模型采用二聚体或二聚单体方法来解决带电链的连通性问题。使用带电荷的硬球链的SAFT模型,可以更准确地将阳离子头和IL的一些阴离子建模为带电荷的链,而不是带电荷的球形链段;通过对杂段SAFT的这些改进,可以更准确地表示活度系数和渗透压系数得以实现,并且IL水溶液的建模扩展到具有有机阴离子的铵IL和咪唑鎓IL。使用改进的杂段SAFT结合Van der Waals和Platteeuw理论,研究了铵ILs对甲烷水合物的抑制作用,这被证明是筛选基于IL的有效水合物抑制剂的预测工具。

著录项

  • 作者

    Jiang, Hao.;

  • 作者单位

    University of Wyoming.;

  • 授予单位 University of Wyoming.;
  • 学科 Engineering Chemical.;Engineering Petroleum.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 216 p.
  • 总页数 216
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号