...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Biogeochemistry of Fe(II) oxidation in a photosynthetic microbial mat: Implications for Precambrian Fe(II) oxidation
【24h】

Biogeochemistry of Fe(II) oxidation in a photosynthetic microbial mat: Implications for Precambrian Fe(II) oxidation

机译:光合微生物垫中Fe(II)氧化的生物地球化学:前寒武纪Fe(II)氧化的意义

获取原文
获取原文并翻译 | 示例

摘要

We studied the role of microbial photosynthesis in the oxidation of Fe(II) to Fe(III) in a high Fe(II) and high Mn(II) hot spring devoid of sulfide and atmospheric oxygen in the source waters. In situ light and dark microelectrode measurements of Fe(II), Mn(II) and O-2 were made in the microbial mat consisting of cyanobacteria and anoxygenic photosynthetic Chloroflexus sp. We show that Fe(II) oxidation occurred when the mat was exposed to varying intensities of sunlight but not near infrared light. We did not observe any Mn(II) oxidation under any light or dark condition over the pH range 5-7. We observed the impact of oxygenic photosynthesis on Fe(II) oxidation, distinct from the influence of atmospheric O-2 and anoxygenic photosynthesis. In situ Fe(II) oxidation rates in the mats and cell suspensions exposed to light are consistent with abiotic oxidation by O-2. The oxidation of Fe(II) to form primary Fe(III) phases contributed to banded iron-formations (BIFs) during the Precambrian. Both oxygenic photosynthesis, which produces O-2 as an oxidizing waste product, and anoxygenic photosynthesis in which Fe(II) is used to fix CO2 have been proposed as Fe(II) oxidation mechanisms. Although we do not know the specific mechanisms responsible for all Precambrian Fe(II) oxidation, we assessed the relative importance of both mechanisms in this modern hot spring environment. In this environment, cyanobacterial oxygen production accounted for all the observed Fe(II) oxidation. The rate data indicate that a modest population of cyanobacteria could have mediated sufficient Fe(II) oxidation for some BIFs. (C) 2007 Elsevier Ltd. All rights reserved.
机译:我们研究了微生物光合作用在高Fe(II)和高Mn(II)温泉中,在源水中没有硫化物和大气氧的条件下,将Fe(II)氧化为Fe(III)的作用。在由蓝细菌和产氧光合作用的Chloroflexus sp。组成的微生物垫中,对Fe(II),Mn(II)和O-2的原位亮和暗微电极进行了测量。我们表明,当垫子暴露于不同强度的日光而不是近红外光时,会发生Fe(II)氧化。我们没有观察到在5-7 pH范围内任何明暗条件下的Mn(II)氧化。我们观察到氧光合作用对Fe(II)氧化的影响,与大气O-2和无氧光合作用的影响不同。暴露在光下的垫子和细胞悬液中的原位Fe(II)氧化速率与O-2的非生物氧化一致。 Fe(II)的氧化形成初级Fe(III)相有助于前寒武纪期间的带状铁形成(BIF)。提出了将O-2氧化为氧化性废物的有氧光合作用和使用Fe(II)固定CO2的无氧光合作用作为Fe(II)的氧化机制。尽管我们不知道造成所有前寒武纪Fe(II)氧化的具体机制,但我们评估了这两种机制在现代温泉环境中的相对重要性。在这种环境下,蓝细菌产生的氧气占观察到的所有Fe(II)氧化的原因。速率数据表明,对于某些BIF,适度的蓝细菌种群可能已经介导了足够的Fe(II)氧化。 (C)2007 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号