...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Hydrous ferric oxide precipitation in the presence of nonmetabolizing bacteria: Constraints on the mechanism of a biotic effect
【24h】

Hydrous ferric oxide precipitation in the presence of nonmetabolizing bacteria: Constraints on the mechanism of a biotic effect

机译:非代谢细菌存在下的含水三氧化二铁沉淀:生物效应机理的限制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We have used room temperature and cryogenic Fe-57 Mossbauer spectroscopy, powder X-ray diffraction (pXRD), mineral magnetometry, and transmission electron microscopy (TEM), to study the synthetic precipitation of hydrous ferric oxides (HFOs) prepared either in the absence (abiotic, a-HFO) or presence (biotic. b-HFO) of nonmetabolizing bacterial cells (Bacillus subtilis or Bacillus licheniformis, similar to10(8) cells/mL) and under otherwise identical chemical conditions, starting from Fe(II) (10(-2), 10(-3), or 10(-4) mol/L) under open oxic conditions and at different pH (6-9). We have also performed the first Mossbauer spectroscopy measurements of bacterial cell wall (Bacillus subtilis) surface complexed Fe, where Fe(III) (10(-3.5)-10(-4.5) mol/L) was added to a fixed concentration of cells (similar to10(8) cells/mL) under open oxic condition; and at various pH (2.5-4.3). We find that non-metabolic bacterial cell wall surface complexation of Fe is not passive in that it affects Fe speciation in at least two ways: (1) it can reduce Fe(III) to sorbed-Fe2+ by a proposed steric and charge transfer effect and (2) it stabilizes Fe(II) as sorbed-Fe2+ against ambient oxidation. The cell wall sorption of Fe occurs in a manner that is not compatible with incorporation into the HFO structure (different coordination environment and stabilization of the ferrous state) and the cell wall-sorbed Fe is not chemically bonded to the HFO particle when they coexist (the sorbed Fe is not magnetically polarized by the HFO particle in its magnetically ordered state). This invalidates the concept that sorption is the first step in a heterogeneous nucleation of HFO onto bacterial cell walls. Both the a-HFOs and the b-HFOs are predominantly varieties of ferrihydrite (Fh), often containing admixtures of nanophase lepidocrocite (nLp). vel they show significant abiotic/biotic differences: Biotic Fh has less intraparticle (including surface region) atomic order (Mossbauer quadrupole splitting), smaller primary particle size (magnetometry blocking temperature), weaker Fe to particle bond strength (Mossbauer center shift), and no six-line Fh (6L-Fh) admixture (pXRD, magnetometry). Contrary to current belief, we find that 6L-Fh appears to be precipitated directly, under a-HFO conditions, from either Fe(II) or Fe(III), and depending on Fe concentration and pH, whereas the presence of bacteria disables all such 6L-Fh precipitation and produces two-line Fh (2L-Fh)-like biotic coprecipitates. Given the nature of the differences between a-HFO and b-HFO and their synthesis condition dependences, several biotic precipitation mechanisms (template effect, near-cell environment effect, catalyzed nucleation and/or growth effect, and substrate-based coprecipitation) are ruled out. The prevailing present view of a template or heterogeneous nucleation barrier reduction effect, in particular. is shown not to be the cause of the large observed biotic effects on the resulting HFOs. The only proposed mechanism (relevant to Fh) that is consistent with all our observations is coprecipitation with and possible surface poisoning by ancillary bacteriagenic compounds. That bacterial cell wall functional groups are redox active and the characteristics of biotic (i.e.. natural) HFOs compared to those of abiotic (i.e., synthetic) HFOs have several possible biogeochemical implications regarding Fe cycling, in (he photic zones of water columns in particular. Copyright (C) 2005 Elsevier Ltd.
机译:我们已使用室温和低温Fe-57 Mossbauer光谱,粉末X射线衍射(pXRD),矿物磁学和透射电子显微镜(TEM)来研究在不存在下制备的水合三氧化二铁(HFO)的合成沉淀(非生物,a-HFO)或存在(生物.b-HFO)的非代谢细菌细胞(枯草芽孢杆菌或地衣芽孢杆菌,类似于10(8)细胞/ mL),并且在其他相同的化学条件下,从Fe(II)开始( 10(-2),10(-3)或10(-4)mol / L)在开放的有氧条件下和不同pH(6-9)下进行。我们还对细菌细胞壁(枯草芽孢杆菌)表面复合铁进行了首次Mossbauer光谱测量,其中将Fe(III)(10(-3.5)-10(-4.5)mol / L)添加到固定浓度的细胞中(类似于10(8)细胞/ mL)在开放的有氧条件下;以及在各种pH(2.5-4.3)下。我们发现Fe的非代谢细菌细胞壁表面络合不是被动的,因为它以至少两种方式影响Fe的形成:(1)通过提议的空间和电荷转移效应,它可以将Fe(III)还原为吸附的Fe2 +。 (2)稳定被吸附的Fe2 +的Fe(II)免受环境氧化。 Fe的细胞壁吸附以与并入HFO结构(不同的配伍环境和亚铁态的稳定化)不兼容的方式发生,并且当细胞壁吸附的Fe共存时不会化学键合到HFO颗粒上(吸附的Fe不会以HFO颗粒的磁有序状态发生磁极化)。这使以下概念无效:吸附是HFO在细菌细胞壁上异质成核的第一步。 a-HFOs和b-HFOs都是主要的水铁矿(Fh)变体,通常包含纳米相细铁云母(nLp)的混合物。它们显示出显着的非生物/生物差异:Biotic Fh具有较少的粒子内(包括表面区域)原子序(Mossbauer四极分裂),较小的初级粒径(磁力计阻断温度),较弱的Fe与粒子的结合强度(Mossbauer中心偏移)和没有六线Fh(6L-Fh)混合物(pXRD,磁力计)。与目前的看法相反,我们发现在α-HFO条件下,取决于Fe的浓度和pH,6L-Fh似乎是直接从Fe(II)或Fe(III)中沉淀出来的,而细菌的存在会使所有这样的6L-Fh沉淀并产生两行Fh(2L-Fh)样的生物共沉淀物。考虑到a-HFO和b-HFO之间差异的性质以及它们的合成条件依赖性,决定了几种生物沉淀机制(模板效应,近​​细胞环境效应,催化的成核和/或生长效应以及基于底物的共沉淀)出来。当前关于模板或非均质成核屏障降低作用的普遍的看法。结果表明,这并不是导致所观察到的HFO产生大量生物效应的原因。与我们所有观察结果一致的唯一提出的机制(与Fh有关)是与辅助细菌性化合物共沉淀并可能引起表面中毒。该细菌细胞壁官能团具有氧化还原活性,并且与非生物(即合成)HFO相比,生物(即天然)HFO的特性在Fe循环方面(特别是在水柱的受光区)具有几种可能的生物地球化学意义。 。版权所有(C)2005 Elsevier Ltd.。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号