...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >A new approach to the equation of state of silicate melts: An application of the theory of hard sphere mixtures
【24h】

A new approach to the equation of state of silicate melts: An application of the theory of hard sphere mixtures

机译:硅酸盐熔体状态方程的一种新方法:硬球混合物理论的应用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A comparison of compressional properties of silicate solids, glasses, and liquids reveals the following fundamental differences: (1) Liquids have much smaller bulk moduli than solids and glasses and the bulk moduli of various silicate melts have a narrow range of values; (2) Liquids do not follow the Birch's law of corresponding state as opposed to solids and glasses; (3) The Grüneisen parameter increases with increasing pressure for liquids but decreases for solids; (4) The radial distribution functions of liquids show that the interatomic distances in liquids do not change upon compression as much as solids do. The last observation indicates that the compression of silicate melts occurs mostly through the geometrical arrangement of various units whose sizes do not change much with compression, i.e., the entropic mechanism of compression plays a dominant role over the internal energy contribution. All of the other three observations listed above can be explained by this point of view. In order to account for the role of the entropic contribution, we propose a new equation of state for multi-component silicate melts based on the hard sphere mixture model of a liquid. We assign a hard sphere for each cation species that moves in the liquid freely except for the volume occupied by other spheres. The geometrical arrangement of these spheres gives the entropic contribution to compression, while the Columbic attraction between all ions provides the internal energy contribution to compression. We calibrate the equation of state using the experimental data on room-pressure density and room-pressure bulk modulus of liquids. The effective size of a hard sphere for each component in silicate melts is determined. The temperature and volume dependencies of sphere diameters are also included in the model in order to explain the experimental data especially the melt density data at high pressures. All compressional properties of a silicate melt can be calculated using the calibrated sphere diameters. This equation of state provides a unified explanation for most of compressional behaviors of silicate melts and the experimental observations cited above including the uniformly small bulk moduli of silicate melts as well as the pressure dependence of Grüneisen parameters. With additional data to better constrain the key parameters, this equation of state will serve as a first step toward the unified equation of state for silicate melts.
机译:硅酸盐固体,玻璃和液体的压缩特性的比较显示出以下基本差异:(1)液体的体积模量比固体和玻璃小得多,并且各种硅酸盐熔体的体积模量值范围窄; (2)与固体和玻璃相反,液体不遵循相应状态的伯奇定律; (3)Grüneisen参数随着液体压力的增加而增加,而对于固体压力则减小。 (4)液体的径向分布函数表明,液体中的原子间距离在压缩时不会像固体那样变化。最后的观察结果表明,硅酸盐熔体的压缩主要是通过各种单元的几何排列而发生的,这些单元的尺寸不会随压缩而变化很大,即,熵的压缩机制在内部能量贡献中起主要作用。上面列出的所有其他三个观察结果都可以用这种观点来解释。为了解释熵贡献的作用,我们基于液体的硬球混合物模型,提出了多组分硅酸盐熔体的新状态方程。我们为每个在液体中自由移动的阳离子物种分配一个硬球,但其他球所占据的体积除外。这些球的几何排列为压缩提供了熵的贡献,而所有离子之间的哥伦布吸引力为压缩提供了内部能量的贡献。我们使用液体的室温密度和室温容积模量的实验数据校准状态方程。确定了硅酸盐熔体中每种成分的硬球有效尺寸。为了解释实验数据,特别是高压下的熔体密度数据,模型中还包括了球直径的温度和体积依赖性。硅酸盐熔体的所有压缩特性都可以使用校准的球体直径来计算。该状态方程为大多数硅酸盐熔体的压缩行为和上述引用的实验观察结果提供了统一的解释,其中包括均匀小的硅酸​​盐熔体的体积模量以及Grüneisen参数的压力依赖性。借助附加数据以更好地约束关键参数,该状态方程将成为迈向硅酸盐熔体统一状态方程的第一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号