...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Geochemical modeling of arsenic sulfide oxidation kinetics in a mining environment
【24h】

Geochemical modeling of arsenic sulfide oxidation kinetics in a mining environment

机译:采矿环境中硫化砷氧化动力学的地球化学模拟

获取原文
获取原文并翻译 | 示例

摘要

Arsenic sulfide (AsS (am), As2S3 (am), orpiment, and realgar) oxidation rates increase with increasing pH values. The rates of arsenic sulfide oxidation at higher pH values relative to those at p (H) over tilde2 are in the range of 26-4478, 3-17, 8-182, and 4-10 times for As2S3 (am), orpiment, AsS (am), and realgar, respectively.Numerical simulations of orpiment and realgar oxidation kinetics were conducted using the geochemical reaction path code EQ3/6 to evaluate the effects of variable DO concentrations and mineral reactivity factors on water chemistry evolution during orpiment and realgar oxidation. The results show that total As concentrations increase by similar to1.14 to 13 times and that pH values decrease by similar to0.6 to 4.2 U over a range of mineral reactivity factors from 1% to 50% after 2000 days (5.5 yr). The As release from orpiment and realgar oxidation exceeds the current U.S. National Drinking Water Standard (0.05 ppm) approximately in 200-300 days at the lowest initial dissolved oxygen concentration (3 ppm) and a reactivity factor of 1%. The results of simulations of orpiment oxidation in the presence of albite and calcite show that calcite can act as an effective buffer to the acid water produced from orpiment oxidation within relatively short periods (days/months), but the release of As continues to increase.Pyrite oxidation rates are faster than orpiment and realgar from pH 2.3 to 8; however, pyrite oxidation rates are slower than As2S3 (am) and AsS (am) at pH 8. The activation energies of arsenic sulfide oxidation range from 16 to 124 kJ/mol at p (H) over tilde8 and temperature 25 to 40degreesC, and pyrite activation energies are similar to52, to 88 kJ/mol, depending on pH and temperature range. The magnitude of activation energies for both pyrite and arsenic sulfide solids indicates that the oxidation of these minerals is dominated by surface reactions, except for As2S3 (am). Low activation energies of As2S3 (am) indicate that diffusion may be rate controlling.Limestone is commonly mixed with sulfide minerals in a mining environment to prevent acid water formation. However, the oxidation rates of arsenic sulfides increase as solution pH rises and result in a greater release of As. Furthermore, the lifetimes of carbonate minerals (i.e., calcite, aragonite, and dolomite) are much shorter than those of arsenic sulfide and silicate minerals. Thus, within a geologic frame time, carbonate minerals may not be present to act as a pH buffer for acid mine waters. Additionally, the presence of silicate minerals such as pyroxenes (wollastonite, jadeite, and spodumene) and Ca-feldspars (labradorite, anorthite, and nepheline) may not be important for buffering acid solutions because these minerals dissolve faster than and have shorter lifetimes than sulfide minerals. However, other silicate minerals such as Na and K-feldspars (albite, sanidine, and microcline), quartz, pyroxenes (augite, enstatite, diopsite, and MnSiO3) that have much longer lifetimes than arsenic sulfide minerals may be present in a system. The results of our modeling of arsenic sulfide mineral oxidation show that these minerals potentially can release significant concentrations of dissolved As to natural waters, and the factors and mechanisms involved in arsenic sulfide oxidation warrant further study. Copyright (C) 2005 Elsevier Ltd.
机译:硫化砷(AsS(am),As2S3(am),雌黄和雄黄)的氧化速率随pH值的增加而增加。相对于在tilde2上p(H)处较高的pH值,硫化砷氧化的速率在26-4478、3-17、8-182和4-10倍的范围内对于As2S3(am)雌黄,使用地球化学反应路径代码EQ3 / 6进行了雌激素和雄黄氧化动力学的数值模拟,以评估雌激素和雄黄氧化过程中可变的DO浓度和矿物反应性因子对水化学演化的影响。结果表明,在2000天(5.5年)后,从1%到50%的矿物反应因子范围内,总As浓度增加了约1.14至13倍,pH值降低了约0.6至4.2U。从果皮中释放的砷和雄黄氧化后,在最低的初始溶解氧浓度(3 ppm)和1%的反应系数下,大约在200-300天内超过了现行的美国国家饮用水标准(0.05 ppm)。在钠长石和方解石存在下对果皮氧化的模拟结果表明,方解石可以在相对较短的时间段(天/月)内作为对果皮氧化产生的酸性水的有效缓冲剂,但As的释放持续增加。在pH值为2.3到8时,黄铁矿的氧化速率比雌黄和雄黄快。但是,在pH 8时,黄铁矿的氧化速率比As2S3(am)和AsS(am)慢。在tilde8和温度25至40℃下,硫化砷的氧化活化能在p(H)范围为16至124 kJ / mol。黄铁矿的活化能类似于52,至88 kJ / mol,具体取决于pH和温度范围。黄铁矿和硫化砷固体的活化能大小表明,这些矿物的氧化主要由表面反应决定,除了As2S3(am)。 As2S3(am)的活化能低表明扩散可能是速率控制的。石灰石通常在采矿环境中与硫化矿物混合,以防止形成酸性水。但是,随着溶液pH值的升高,硫化砷的氧化速率会增加,并导致更多的As释放。此外,碳酸盐矿物(即方解石,文石和白云石)的寿命比硫化砷和硅酸盐矿物的寿命短得多。因此,在地质框架时间内,可能不存在碳酸盐矿物来充当酸性矿井水的pH缓冲剂。此外,诸如辉石(硅灰石,翡翠和锂辉石)和钙长石(拉长石,钙长石和霞石)等硅酸盐矿物的存在对于缓冲酸溶液可能并不重要,因为这些矿物的溶解速度比硫化物快且寿命短矿物质。但是,系统中可能会存在寿命比砷化砷矿物长得多的其他硅酸盐矿物,例如Na和K-长石(环烷,山梨酸和微碱),石英,辉石(辉石,顽辉石,透辉石和MnSiO3)。我们对硫化砷矿物氧化的建模结果表明,这些矿物可能会释放出大量浓度的溶解于天然水的砷,并且涉及硫化砷氧化的因素和机理值得进一步研究。版权所有(C)2005 Elsevier Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号