...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Fe-carbide and Fe-sulfide liquid immiscibility in IAB meteorite, Campo del Cielo: Implications for iron meteorite chemistry and planetesimal core compositions
【24h】

Fe-carbide and Fe-sulfide liquid immiscibility in IAB meteorite, Campo del Cielo: Implications for iron meteorite chemistry and planetesimal core compositions

机译:IAB陨石中的碳化铁和硫化铁液体不混溶,Campo del Cielo:对铁陨石化学和小行星核心成分的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The majority of iron meteorites evolved in a relatively low-sulfur environment whereas chondritic meteorites tend to be comparatively sulfur-rich. Since liquid iron should incorporate sulfide minerals as it migrates from its chondritic source, this represents something of a conundrum in our understanding of iron meteorite formation, and by association, of asteroid core formation. Here, we investigate a series of samples of the Campo del Cielo suite of silicate-bearing (nonmagmatic) iron meteorites, which come from a single fall event. These likely formed in an impact-related process by rapid accumulation of liquid metal and incorporation of silicate clasts. We model the competing processes of rapid crystallisation of metal and flotational separation of the silicate clasts to provide a basis for understanding the fractionation of the Fe-Ni-S-C-P-(Cr-O) liquid. A combination of textural analysis of complex metal-graphite and sulfide veins and networks, laser ablation analysis of metal and sulfides, and published phase relations, are used to show that fractionation promoted evolution to a system with immiscible Fe-carbide and Fe-sulfide liquids. We suggest that this development of immiscibility allowed the silicate clasts to become enriched in S, C and P as they underwent flotational separation. This process left a large accumulation of light element-depleted FeNi metal, represented by the bulk of the Campo del Cielo meteorites. If similar large metal accumulations were able to form through impacts during the growth stage of planetesimals, preferential settling of these upon subsequent silicate partial melting would promote formation of light element-depleted cores. Furthermore, because the silicate clasts controlled fractionation of the metallic liquid in Campo del Cielo, we suggest that; (1) trace element trends within the silicate-bearing iron meteorite groups reflect the duration of interaction between liquid metal and clasts, and (2) that the differences in trace element chemistry between fractionally crystallised (magmatic) and silicate-bearing iron meteorites are best explained by a combination of the presence or absence of these clasts, and the duration of metal crystallisation.
机译:大多数铁陨石是在相对低硫的环境中形成的,而粒状陨石往往是相对富硫的。由于液态铁在从其软骨来源迁移时应包含硫化物矿物,因此这在我们对铁陨石形成以及与之相关的对小行星核形成的理解中代表了一个难题。在这里,我们研究了Campo del Cielo系列含硅酸盐(非岩浆)铁陨石的一系列样品,这些样品来自一次坠落事件。这些可能是由于液态金属的快速积累和掺入硅酸盐碎片而在与冲击有关的过程中形成的。我们对金属快速结晶和硅酸盐碎片的浮选分离的竞争过程进行建模,从而为理解Fe-Ni-S-C-P-(Cr-O)液体的分馏提供基础。复杂的金属-石墨和硫化物的脉络和网络的组织结构分析,金属和硫化物的激光烧蚀分析以及已公开的相关系的组合,用于显示分馏促进了向不混溶的铁-碳化物和铁-硫化物液体的演化。 。我们认为,这种不混溶性的发展使得硅酸盐碎屑在进行浮选分离时变得富含S,C和P。这个过程留下了大量的轻元素贫化的FeNi金属,以大部分的Campo del Cielo陨石为代表。如果在小行星的生长阶段能够通过撞击形成类似的大金属堆积,则在随后的硅酸盐部分熔化时优先沉降这些堆积会促进轻元素贫乏型芯的形成。此外,由于硅酸盐在Campo del Cielo中控制了金属液体的分馏,因此我们建议: (1)含硅酸盐的铁陨石群中的痕量元素趋势反映了液态金属与碎片之间相互作用的持续时间,以及(2)分数结晶(岩浆)和含硅酸盐的铁陨石之间的微量元素化学差异最佳。这些碎片的存在与否以及金属结晶的持续时间的综合解释。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号