首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Fluid-present melting of sulfide-bearing ocean-crust: Experimental constraints on the transport of sulfur from subducting slab to mantle wedge
【24h】

Fluid-present melting of sulfide-bearing ocean-crust: Experimental constraints on the transport of sulfur from subducting slab to mantle wedge

机译:含硫化物的大洋壳的流体存在下的熔融:从俯冲板到地幔楔的硫迁移实验约束

获取原文
获取原文并翻译 | 示例
           

摘要

To constrain the sulfur enrichment of arc magma source-regions and the agent of sulfur transport from subducting slab to mantle wedge, here we report experimental measurements of sulfur content at sulfide saturation (SCSS) of slab-derived hydrous partial melts at 2.0 and 3.0GPa and from 800 to 1050°C, using Ni-NiO (NNO) and Co-CoO (CCO) external oxygen fugacity (fO_2) buffers. A synthetic H_2O-saturated MORB with 1wt.% S (added as pyrite) was used as starting material. All experiments produced pyrrhotite- and fluid-saturated assemblages of silicate glass, clinopyroxene, garnet, quartz, and rutile (plus amphibole at 2GPa/800°C and phengite at 3GPa/850°C). The silicate partial melt composition evolves from rhyolitic to rhyodacitic compositions with increasing temperature and melting degree in equilibrium with an eclogitic residue, showing substantial decrease in SiO_2 and Mg# and increase in FeOT, TiO_2 and Na_2O. At all temperatures melt sulfur concentrations are very low, with an average of 110±50ppm S, similar to previous measurements at lower pressures. Melt SCSS appears to be mainly controlled by the melt composition, the activity of water, aH_2O and the sulfur fugacity, fS_2 (calculated from the composition of pyrrhotite). Mass-balance calculations show that the proportion of bulk sulfur dissolved in the silicate melt is negligible (<0.005wt.% of the bulk sulfur). In contrast, diminishing proportion of pyrrhotite with increasing temperature suggests that the fluid phase at equilibrium may contain as much as 10-15wt.% S at ≥1050°C, and more than 40wt.% of the bulk sulfur initially present in the slab may be transferred to the aqueous fluid. Our data also suggest that fluid/melt sulfur partitioning increases with increasing temperature, from ~300 at 900°C to ~1200 at 1050°C, whereas pressure appears to have less of an effect. With respect to fO_2, no real difference of fluid/melt S partitioning, within data uncertainties, between NNO and CCO at 2 and 3GPa was observed. This is interpreted as a consequence of comparable S speciation in the hydrous fluid phase in fO_2 conditions ranging from NNO-0.5 to CCO-1.0 at 2 and 3GPa and 850 to 1050°C. Under these reducing conditions, the hydrous fluid phase is composed mainly of H_2S and H_2O, and to a lesser extent of S_2 and H_2, and S in melt is dissolved almost totally as S~(2-) (i.e., S~(6+)/S_(total)~0). Our study suggests that slab-derived aqueous fluids with reduced sulfur species could be sufficient vectors for the transport of sulfur from the slab to the mantle wedge and only ~0.3 to 1.5wt.% of slab fluids are required for the mantle wedge enrichment in sulfur over background mantle concentrations. Also, depending on the initial amount of sulfur in the slab, recycling of sulfide to the deep mantle may be favored in cold to intermediate subduction zones, whereas warm subduction zones will cause fluid-mediated slab-mantle wedge transfer of sulfur.
机译:为了限制弧岩浆源区的硫富集和硫从俯冲板到地幔楔的传输,本文报道了板坯衍生的含水部分熔融物在2.0GPa和3.0GPa时硫化物饱和度(SCSS)下硫含量的实验测量。使用Ni-NiO(NNO)和Co-CoO(CCO)外部氧气逸度(fO_2)缓冲液在800至1050°C的温度范围内。具有1wt。%S的合成的H_2O饱和的MORB(以黄铁矿形式添加)用作起始材料。所有实验均产生了硅铁玻璃,斜辉石,石榴石,石英和金红石(在2GPa / 800°C时有闪石和在3GPa / 850°C时有辉石)的磁黄铁矿和流体饱和组合。硅酸盐部分熔体组成从流变型转变为流变型组成,并且温度和熔融度与浮性残渣保持平衡,表明SiO_2和Mg#大量减少,FeOT,TiO_2和Na_2O大量增加。在所有温度下,熔融硫的浓度都非常低,平均为110±50ppm S,这与以前在较低压力下的测量结果相似。熔体SCSS似乎主要受熔体组成,水aH_2O的活性和硫逸度fS_2(由黄铁矿的组成计算)控制。质量平衡计算表明,溶解在硅酸盐熔体中的本体硫的比例可以忽略不计(<本体硫的0.005wt。%)。相反,随着温度的升高,黄铁矿比例的降低表明,在≥1050°C的平衡状态下,液相可能含有高达10-15wt。%的S,而最初存在于板坯中的总硫含量可能超过40wt。%被转移到水性液体中。我们的数据还表明,流体/熔体硫的分配随着温度的升高而增加,从900°C时的〜300升高到1050°C时的〜1200°,而压力似乎影响较小。关于fO_2,在数据不确定性内,在2GPa和3GPa下,NNO和CCO之间没有观察到流体/熔体S分配的真正差异。这被解释为在fO_2条件下,在2和3GPa和850至1050°C的NNO-0.5至CCO-1.​​0范围内,水相中可比的S形态的结果。在这些还原条件下,水相主要由H_2S和H_2O组成,S_2和H_2的含量较小,熔体中的S几乎全部溶解为S〜(2-)(即S〜(6+ )/ S_(总计)〜0)。我们的研究表明,板坯衍生的含硫量减少的含水液可能是将硫从板坯运输到地幔楔的足够载体,并且只需约0.3%至1.5wt。%的板坯流体即可富集硫的地幔楔超过背景地幔浓度。同样,根据板坯中硫的初始含量,在冷至中俯冲带中可能有利于将硫化物再循环至深地幔,而热俯冲带将引起流体介导的板-幔楔形硫的转移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号