首页> 外文期刊>Experimental Thermal and Fluid Science: International Journal of Experimental Heat Transfer, Thermodynamics, and Fluid Mechanics >Experimental and numerical study of flammability limits of gaseous mixtures in porous media
【24h】

Experimental and numerical study of flammability limits of gaseous mixtures in porous media

机译:多孔介质中气体混合物可燃极限的实验和数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

The present work deals with an experimental and numerical study of flammability limits for hydrocarbon-air mixtures in porous media and their dependence on the physical and geometrical properties of the solid phase. Experimental data have been obtained in a standard flammability apparatus modified through the insertion of a packed bed of spheres. Numerical data have been obtained through integration of the equations of a one-dimensional model with single step kinetics. The model accounts for heat transfer to the solid phase in the porous medium. The kinetic parameters of the model are tuned in order to match flammability limits for freely propagating deflagrations; then, the model is applied to cases with porous medium. Numerical results are compared with experimental results and at least qualitative agreement is found. Particularly, both sets of data show that flammability limits are more sensitive to the geometric properties of the porous medium than to its physical properties. An explanation is given through the analysis of the heat transfer process. The results show that, in modelling flammability limits within porous media, heat losses to the solid phase should be taken into account! along with fluid-dynamic effects, to correctly understand extinction mechanisms and predict flammability data. (C) 2000 Elsevier Science Inc. All rights reserved. [References: 17]
机译:本工作涉及对多孔介质中烃-空气混合物的可燃性极限及其对固相物理和几何性质的依赖性的实验和数值研究。在通过插入球状填充床而改进的标准可燃装置中获得了实验数据。通过将一维模型的方程与单步动力学相集成,已经获得了数值数据。该模型说明了热传递到多孔介质中的固相。调整模型的动力学参数,以匹配可燃极限,以自由传播爆燃。然后,将该模型应用于具有多孔介质的情况。将数值结果与实验结果进行比较,至少发现了定性的一致性。特别地,两组数据均显示,可燃性极限对多孔介质的几何特性比对其物理特性更敏感。通过对传热过程的分析给出了解释。结果表明,在对多孔介质内的可燃性极限进行建模时,应考虑到固相的热损失!连同流体动力学效应一起,正确理解消光机理并预测可燃性数据。 (C)2000 Elsevier Science Inc.保留所有权利。 [参考:17]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号