...
首页> 外文期刊>Bulletin of the Korean Chemical Society >Fabrication of a Superhydrophobic Triphenylene Ether Derivative Film on an AI Plate
【24h】

Fabrication of a Superhydrophobic Triphenylene Ether Derivative Film on an AI Plate

机译:在AI板上制备超疏水联苯醚衍生物薄膜

获取原文
获取原文并翻译 | 示例

摘要

In recent years, superhydrophobic surfaces have received much attention owing to their smart functions such as self-cleaning property, water repellent property, anticontamina-tion, and anti-icing.In nature, many plants, animals, and insects exhibit superhydrophobicity, and this phenomenon motivates researchers to fabricate new superhydrophobic surfaces for practical applications. The most famous example of such a surface is the lotus leaf surface, which is composed of a nano/microscale rough structure and covered with a low-surface-energy material {i.e., Wax).4 The self-cleaning property of lotus leaf can be attributed to superhydrophobicity. A superhydrophobic surface has a high water contact angle (>150°) and a low sliding angle (< 10°). The nano/microscale rough structure minimizes the contact between a particle and the surface of lotus leaf. Thus, the contamination on lotus leaf can be easily removed with water droplets. Therefore, the surface of lotus leaf is always maintained clean. These results have shown that the surface wettability of biological systems can be attributed to the nano/microscale roughness of the surface and the properties of surface-coated materials. Based on these observations, many efforts have been devoted to fabricate artificial biomimetic surfaces with various materials. In general, a superhydrophobic surface is fabricated in two steps: (1) creation of nano/microscale roughness and (2) chemical treatment of the rough surface with a low-surface-energy material. The created rough nano/microstructures on the surface trap air between them, and the trapped air prevents the penetration of water.
机译:近年来,超疏水表面因其自洁性能,疏水性能,抗污染和防冰等智能功能而备受关注,在自然界中,许多植物,动物和昆虫都表现出超疏水性,因此这种现象促使研究人员为实际应用制造新的超疏水表面。这种表面最著名的例子是荷叶表面,它由纳米/微米级粗糙结构组成,并覆盖有低表面能材料(即蜡)。4荷叶罐的自清洁特性归因于超疏水性。超疏水表面的水接触角高(> 150°),滑动角低(<10°)。纳米/微米级粗糙结构最大程度地减少了粒子与荷叶表面之间的接触。因此,可以容易地用水滴去除荷叶上的污染物。因此,荷叶表面始终保持清洁。这些结果表明,生物系统的表面润湿性可归因于表面的纳米/微米级粗糙度和表面涂层材料的特性。基于这些观察,已致力于用各种材料制造人造仿生表面。通常,超疏水表面分两个步骤制造:(1)产生纳米/微米级粗糙度;(2)用低表面能材料对粗糙表面进行化学处理。表面上产生的粗糙的纳米/微结构会在它们之间捕获空气,而捕获的空气会阻止水渗透。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号