...
首页> 外文期刊>Experimental Physiology >Understanding the physiology of heart failure through cellular and in vivo models-towards targeting of complex mechanisms
【24h】

Understanding the physiology of heart failure through cellular and in vivo models-towards targeting of complex mechanisms

机译:通过细胞和体内模型了解心力衰竭的生理学-靶向复杂机制

获取原文
获取原文并翻译 | 示例
           

摘要

New Findings: ? What is the topic of this review? Heart failure is a progressive disease syndrome that, in the early stages, involves subtle tissue and cellullar changes. This review highlights novel imaging techniques that allow quantitative investigation of the underlying pathophysiological mechanisms in vivo. ? What advances does it highlight? High-content voltage imaging of the left ventricle showed significant conduction slowing in the mdx mouse model of heart failure, corresponding to selective loss of Na+ channels and dystrophin in the lateral cardiac myocyte membrane. Super-resolution STED imaging after myocardial infarction uncovered proliferative, differential remodelling of individual T-tubules and network properties leading to intracellular Ca2+ release heterogeneity. These techniques reveal potential mechanisms of arrhythmia susceptibility, tissue degeneration and contractile dysfunction. Heart failure (HF) is a complex disease syndrome, which affects physiology at all levels, from the molecule to the whole organism. Following a causative insult, a maladaptive response occurs, which sustains cardiac remodelling and leads to a final common pathway of debilitating HF symptoms. In terms of mechanisms, distinct defects of excitation-contraction coupling compartments and organelles have been identified in cardiac samples of patients and animal models, which include changes in Ca2+ transport proteins and T-tubules. From a physiological standpoint, the source of regulatory intracellular Ca2+ is defined by ~20,000 Ca2+ release units per cardiac myocyte, which jointly modulate contractile force production. We and others have characterized key changes in protein and membrane components of Ca2+ release units during HF in patient samples and transgenic models to gain insight into complex disease mechanisms. While earlier HF studies identified intracellular Ca2+ release as a major cause of contractile dysfunction, electrical dysfunction has gained attention as an important mechanism of HF mortality. In parallel, high-resolution imaging techniques have become instrumental to understand HF mechanisms in the intact cell and tissue environment, supporting translation of novel diagnostic strategies. Indeed, the increased spatial and temporal resolution of different experimental imaging techniques addresses the vastly different scales of HF pathophysiology, to correlate experimental with clinical surrogate markers, and to extend mechanisms to early, often subtle changes in HF. This last goal, in particular, will be essential to translate novel pathophysiological insight back to the growing number of asymptomatic individuals at increased risk for HF development, who may benefit most from early therapeutic interventions.
机译:新发现:该评论的主题是什么?心力衰竭是一种进行性疾病综合征,在早期阶段,涉及微妙的组织和细胞质变化。这篇综述重点介绍了新颖的成像技术,可以对体内潜在的病理生理机制进行定量研究。 ?它突出了哪些进步?左心室的高电压成像显示,在心力衰竭的mdx小鼠模型中,传导明显减慢,这与心肌细胞外侧膜中的Na +通道和肌营养不良蛋白的选择性丧失相对应。心肌梗死后的超高分辨率STED成像发现单个T管的增殖,差异重塑和网络特性导致细胞内Ca2 +释放异质性。这些技术揭示了心律不齐易感性,组织变性和收缩功能障碍的潜在机制。心力衰竭(HF)是一种复杂的疾病综合征,会影响从分子到整个生物体各个层面的生理机能。在发生因果关系的伤害之后,就会发生适应不良的反应,这种反应会维持心脏重塑,并导致使HF症状恶化的最终常见途径。就机理而言,已在患者和动物模型的心脏样品中鉴定出了兴奋收缩偶联区室和细胞器的明显缺陷,其中包括Ca2 +转运蛋白和T管的变化。从生理学的角度来看,调节性细胞内Ca2 +的来源定义为每个心肌细胞约20,000个Ca2 +释放单元,它们共同调节收缩力的产生。我们和其他人已经表征了患者样本和转基因模型中HF期间Ca2 +释放单元的蛋白质和膜成分的关键变化,以深入了解复杂的疾病机制。早期的HF研究发现细胞内Ca2 +释放是收缩功能障碍的主要原因,而电功能障碍已引起关注,是HF死亡的重要机制。同时,高分辨率成像技术已成为了解完整细胞和组织环境中HF机制的工具,并支持新型诊断策略的翻译。的确,不同实验成像技术提高的时空分辨率可解决HF病理生理学的巨大差异,将实验与临床替代标志物相关联,并将机制扩展到HF的早期且通常是细微的变化。尤其是最后一个目标,对于将新的病理生理学见解转化为越来越多的无症状个体,而这些个体在HF发生风险增加中至关重要,而这些患者可能会从早期的治疗性干预中受益最大,这是至关重要的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号