首页> 外文期刊>energies >Machine Learning-A Review of Applications in Mineral Resource Estimation
【24h】

Machine Learning-A Review of Applications in Mineral Resource Estimation

机译:机器学习-矿产资源估算应用综述

获取原文
获取原文并翻译 | 示例

摘要

Mineral resource estimation involves the determination of the grade and tonnage of a mineral deposit based on its geological characteristics using various estimation methods. Conventional estimation methods, such as geometric and geostatistical techniques, remain the most widely used methods for resource estimation. However, recent advances in computer algorithms have allowed researchers to explore the potential of machine learning techniques in mineral resource estimation. This study presents a comprehensive review of papers that have employed machine learning to estimate mineral resources. The review covers popular machine learning techniques and their implementation and limitations. Papers that performed a comparative analysis of both conventional and machine learning techniques were also considered. The literature shows that the machine learning models can accommodate several geological parameters and effectively approximate complex nonlinear relationships among them, exhibiting superior performance over the conventional techniques.
机译:矿产资源估算涉及使用各种估算方法根据矿床的地质特征确定矿床的品位和吨位。传统的估算方法,如几何和地统计技术,仍然是使用最广泛的资源估算方法。然而,计算机算法的最新进展使研究人员能够探索机器学习技术在矿产资源估算中的潜力。本研究对采用机器学习估算矿产资源的论文进行了全面回顾。这篇综述涵盖了流行的机器学习技术及其实现和局限性。还考虑了对传统学习技术和机器学习技术进行比较分析的论文。文献表明,机器学习模型可以适应多个地质参数,并有效地近似它们之间的复杂非线性关系,表现出优于传统技术的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号