首页> 外文期刊>Biosensors >SERSNet: Surface-Enhanced Raman Spectroscopy Based Biomolecule Detection Using Deep Neural Network
【24h】

SERSNet: Surface-Enhanced Raman Spectroscopy Based Biomolecule Detection Using Deep Neural Network

机译:SERSNet:基于深度神经网络的表面增强拉曼光谱生物分子检测

获取原文
获取原文并翻译 | 示例

摘要

Surface-Enhanced Raman Spectroscopy (SERS)-based biomolecule detection has been a challenge due to large variations in signal intensity, spectral profile, and nonlinearity. Recent advances in machine learning offer great opportunities to address these issues. However, well-documented procedures for model development and evaluation, as well as benchmark datasets, are lacking. Towards this end, we provide the SERS spectral benchmark dataset of Rhodamine 6G (R6G) for a molecule detection task and evaluate the classification performance of several machine learning models. We also perform a comparative study to find the best combination between the preprocessing methods and the machine learning models. Our best model, coined as the SERSNet, robustly identifies R6G molecule with excellent independent test performance. In particular, SERSNet shows 95.9 balanced accuracy for the cross-batch testing task.
机译:基于表面增强拉曼光谱 (SERS) 的生物分子检测由于信号强度、光谱分布和非线性的巨大变化而一直是一个挑战。机器学习的最新进展为解决这些问题提供了很好的机会。然而,缺乏有据可查的模型开发和评估程序以及基准数据集。为此,我们提供了罗丹明6G(R6G)的SERS光谱基准数据集,用于分子检测任务,并评估了几种机器学习模型的分类性能。我们还进行了比较研究,以找到预处理方法和机器学习模型之间的最佳组合。我们最好的模型,被称为SERSNet,具有出色的独立测试性能,可以稳健地识别R6G分子。特别是,SERSNet在跨批次测试任务中显示出95.9%的平衡准确率。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号