首页> 外文期刊>Bulletin of the American Mathematical Society >Nonlinear dynamics of networks: The groupoid formalism
【24h】

Nonlinear dynamics of networks: The groupoid formalism

机译:网络的非线性动力学:类群形式主义

获取原文
       

摘要

A formal theory of symmetries of networks of coupled dynamical systems, stated in terms of the group of permutations of the nodes that preserve the network topology, has existed for some time. Global network symmetries impose strong constraints on the corresponding dynamical systems, which affect equilibria, periodic states, heteroclinic cycles, and even chaotic states. In particular, the symmetries of the network can lead to synchrony, phase relations, resonances, and synchronous or cycling chaos. Symmetry is a rather restrictive assumption, and a general theory of networks should be more flexible. A recent generalization of the group-theoretic notion of symmetry replaces global symmetries by bijections between certain subsets of the directed edges of the network, the 'input sets'. Now the symmetry group becomes a groupoid, which is an algebraic structure that resembles a group, except that the product of two elements may not be defined. The groupoid formalism makes it possible to extend group-theoretic methods to more general networks, and in particular it leads to a complete classification of 'robust' patterns of synchrony in terms of the combinatorial structure of the network. Many phenomena that would be nongeneric in an arbitrary dynamical system can become generic when constrained by a particular network topology. A network of dynamical systems is not just a dynamical system with a high-dimensional phase space. It is also equipped with a canonical set of observables - the states of the individual nodes of the network. Moreover, the form of the underlying ODE is constrained by the network topology - which variables occur in which component equations, and how those equations relate to each other. The result is a rich and new range of phenomena, only a few of which are yet properly understood.
机译:耦合动力学系统的网络对称性的形式化理论已经存在了一段时间,该理论以保留网络拓扑结构的节点排列组的形式表示。全局网络对称性对相应的动力学系统施加了强大的约束,这会影响平衡,周期状态,异质周期甚至混沌状态。特别地,网络的对称性可能导致同步,相位关系,谐振以及同步或循环混乱。对称性是一个限制性的假设,网络的一般理论应该更灵活。群体理论的对称性的最新概括通过在网络的有向边的某些子集(“输入集”)之间的双射来代替全局对称性。现在,对称群变成了类群,这是一个类似于群的代数结构,只是可能没有定义两个元素的乘积。群状形式主义使得将群理论方法扩展到更通用的网络成为可能,并且特别地,它导致根据网络的组合结构对同步的“稳健”模式进行完全分类。当受特定的网络拓扑约束时,在任意动态系统中非通用的许多现象会变得通用。动力系统网络不仅仅是具有高维相空间的动力系统。它还配备了一组规范的可观测值-网络各个节点的状态。此外,底层ODE的形式受到网络拓扑的限制-哪些变量出现在哪些组件方程式中,以及这些方程式如何相互关联。结果是出现了一系列新现象,其中只有少数现象得到了正确的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号