...
首页> 外文期刊>European Journal of Pharmacology: An International Journal >Force-frequency relationship in intact mammalian ventricular myocardium: physiological and pathophysiological relevance.
【24h】

Force-frequency relationship in intact mammalian ventricular myocardium: physiological and pathophysiological relevance.

机译:完整的哺乳动物心室心肌中的力频关系:生理和病理生理相关性。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The force-frequency relationship (FFR) is an important intrinsic regulatory mechanism of cardiac contractility. The FFR in most mammalian ventricular myocardium is positive; that is, an increase in contractile force in association with an increase in the amplitude of Ca(2+) transients is induced by elevation of the stimulation frequency, which reflects the cardiac contractile reserve. The relationship is different depending on the range of frequency and species of animal. In some species, including rat and mouse, a 'primary-phase' negative FFR is induced over the low-frequency range up to approximately 0.5-1 Hz (rat) and 1-2 Hz (mouse). Even in these species, the FFR over the frequency range close to the physiological heart rate is positive and qualitatively similar to that in larger mammalian species, although the positive FFR is less prominent. The integrated dynamic balance of the intracellular Ca(2+) concentration ([Ca(2+)](i)) is the primary cellular mechanism responsible for the FFR and is determined by sarcoplasmic reticulum (SR) Ca(2+) load and Ca(2+) flux through the sarcolemma via L-type Ca(2+) channels and the Na(+)-Ca(2+) exchanger. Intracellular Na(+) concentration is also an important factor in [Ca(2+)](i) regulation. In isolated rabbit papillary muscle, over a lower frequency range (<0.5 Hz), an increase in duration rather than amplitude of Ca(2+) transients appears to be responsible for the increase in contractile force, while over an intermediate frequency range (0.5-2.0 Hz), the amplitude of Ca(2+) transients correlates well with the increase in contractile force. Over a higher frequency range (>2.5 Hz), the contractile force is dissociated from the amplitude of Ca(2+) transients probably due to complex cellular mechanisms, including oxygen limitation in the central fibers of isolated muscle preparations, while the amplitude of Ca(2+) transients increases further with increasing frequency ('secondary-phase' negative FFR). Calmodulin (CaM) may contribute to a positive FFR and the frequency-dependent acceleration of relaxation, although the role of calmodulin has not yet been established unequivocally. In failing ventricular myocardium, the positive FFR disappears or is inverted and becomes negative. The activation and overexpression of cardiac sarcoplasmic reticulum Ca(2+) ATPase (SERCA2a) is able to reverse these abnormalities. Frequency-dependent alterations of systolic and diastolic force in association with those of Ca(2+) transients and diastolic [Ca(2+)](i) levels are excellent indicators for analysis of cardiac excitation-contraction coupling, and for evaluating the severity of cardiac contractile dysfunction, cardiac reserve capacity and the effectiveness of therapeutic agents in congestive heart failure.
机译:力-频率关系(FFR)是心脏收缩力的重要内在调节机制。大多数哺乳动物心室心肌的FFR为阳性;即,通过增加刺激频率来引起收缩力的增加与Ca(2+)瞬变幅度的增加相关,这反映了心脏的收缩储备。这种关系取决于动物的频率范围和种类。在某些物种中,包括大鼠和小鼠,在大约0.5-1 Hz(大鼠)和1-2 Hz(小鼠)的低频范围内会诱发“初级”负FFR。即使在这些物种中,在接近生理心率的频率范围内,FFR也是阳性的,并且在质量上与较大的哺乳动物物种相似,尽管阳性FFR不太明显。细胞内Ca(2+)浓度([Ca(2 +)](i))的综合动态平衡是负责FFR的主要细胞机制,由肌浆网(SR)Ca(2+)负荷和Ca(2+)通量通过L型Ca(2+)通道和Na(+)-Ca(2+)交换器穿过肌膜。细胞内Na(+)浓度也是[Ca(2 +)](i)调节的重要因素。在孤立的兔乳头肌,在较低的频率范围(<0.5 Hz)中,持续时间的增加而不是Ca(2+)瞬变的幅度似乎是收缩力增加的原因,而在中频范围(0.5 -2.0 Hz),Ca(2+)瞬变的幅度与收缩力的增加很好地相关。在较高的频率范围(> 2.5 Hz)中,收缩力从Ca(2+)瞬变的振幅中解离出来,这可能是由于复杂的细胞机制,包括孤立的肌肉制剂的中央纤维中的氧气限制而Ca的振幅(2+)瞬态随着频率的增加而进一步增加(“二次相”负FFR)。尽管尚未明确确定钙调蛋白的作用,但钙调蛋白(CaM)可能有助于正FFR和频率相关的放松加速。在衰竭的心室心肌中,阳性FFR消失或反转并变为阴性。心脏肌浆网Ca(2+)ATPase(SERCA2a)的激活和过表达能够逆转这些异常。收缩压和舒张力的频率依赖性变化与Ca(2+)瞬变和舒张性[Ca(2 +)](i)的水平相关,是分析心脏激发-收缩耦合以及评估严重程度的极佳指标收缩功能障碍,心脏储备能力和治疗剂在充血性心力衰竭中的作用

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号