...
首页> 外文期刊>Bulletin of the Seismological Society of America >Modeling of the perfectly matched layer absorbing boundaries and intrinsic attenuation in explicit finite-element methods
【24h】

Modeling of the perfectly matched layer absorbing boundaries and intrinsic attenuation in explicit finite-element methods

机译:显式有限元方法中吸收边界和固有衰减的完美匹配层的建模

获取原文
获取原文并翻译 | 示例

摘要

we present an implementation of the perfectly matched layer (PML) absorbing boundary conditions and modeling of intrinsic attenuation (Q) in explicit finite-element simulations of wave propagation. The finite-element method uses one integration point and an hourglass control scheme, which leads to an easy extension of the velocity-stress implementation of PML to the finite-element method. Numerical examples using both regular and irregular elements in the PML region show excellent results: very few reflections are observed from the boundary for both body waves and surface waves-far superior to the classic first-order absorbing boundaries. The one-point integration also gives rise to an easy incorporation of the coarse-grain approach for modeling Q (Day, 1998). We implement the coarse-grain method in a structured finite-element mesh straightforwardly. We also apply the coarse-grain method to a widely used, slightly unstructured finite-element mesh, where unstructured finite elements are only used in the vertical velocity transition zones. A linear combination of eight relaxation mechanisms is used to simulate the target attenuation model over a wide frequency range. The relaxation time and weight of each relaxation mechanism are distributed in a spatially periodic manner to the center of each element. Stress relaxations caused by anelastic material response are calculated from elastic strains in the element and redistributed to the nodal forces of the element. Numerical simulation of anelastic wave propagation in a layered velocity structure with very small Qs using both the structured mesh and the unstructured mesh show excellent agreement with the analytical solutions when the viscoelastic modulus is calculated by a harmonic average over the coarse-grain unit. Our scheme greatly expands the use of PML and the coarse-grain method for modeling Q, so that these methods can be used in a versatile and efficient finite-element formulation.
机译:我们在波传播的显式有限元模拟中提出了吸收边界条件和固有衰减(Q)建模的完美匹配层(PML)的实现。有限元方法使用一个积分点和一个沙漏控制方案,这使得将PML的速度应力实现轻松扩展到有限元方法。在PML区域中使用规则和不规则元素的数值示例显示了出色的结果:对于体波和表面波,从边界观察到的反射非常少,远远优于经典的一阶吸收边界。单点积分还可以轻松地将粗粒方法用于Q建模(Day,1998年)。我们直接在结构化有限元网格中实现粗粒度方法。我们还将粗粒度方法应用于广泛使用的,略微非结构化的有限元网格,其中非结构化有限元仅在垂直速度转换区域中使用。八个松弛机制的线性组合用于在较宽的频率范围内模拟目标衰减模型。每个松弛机制的松弛时间和权重以空间周期的方式分布到每个元素的中心。由非弹性材料响应引起的应力松弛是根据单元中的弹性应变计算的,并重新分配给单元的节点力。当通过在粗粒单元上通过谐波平均计算粘弹性模量时,使用结构化网格和非结构化网格在具有非常小的Qs的层状速度结构中非弹性波传播的数值模拟显示出与解析解的极好的一致性。我们的方案大大扩展了PML的使用和用于Q建模的粗粒度方法,因此这些方法可用于通用且有效的有限元公式化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号