首页> 外文期刊>dalton transactions >Reactivity studies of η2-acyl complexes of molybdenum. kinetics of η2-acyl to η2-iminoacyl isomerization in their reactions with isocyanides
【24h】

Reactivity studies of η2-acyl complexes of molybdenum. kinetics of η2-acyl to η2-iminoacyl isomerization in their reactions with isocyanides

机译:钼η2-酰基配合物的反应性研究。η2-酰基-η2-亚氨基酰基异构化反应与异氰化物反应的动力学

获取原文

摘要

Reactivity studies of q2-acyl complexes of molybdenum. Kinetics of q2-acylto q2=iminoacyl isomerization in their reactions with isocyanidesMaria del Mar Conejo, Antonio Pizzano, Luis J. Sanchez * and Ernest0 Carmona *Departamen to Quimica Inorganica-Instituto de Investigaciones Quimicas, Universidad deSevilla- Consejo Superior de Investigaciones CientiJicas, Apdo. 553, 41071 Sevilla, SpainTreatment of the dihaptoacyls Mo{q2-C(0)R)L(C0)(PMe3), with carbon monoxide afforded the dicarbonylderivatives Mo{q2-C(0)R}L(C0),(PMe3) L = H,B(pz), or H,B(dmpz),; pz = pyrazolyl, dmpz = 33-dimethylpyrazolyl; R = Me, CH,SiMe3 or CH,CMe,. The analogous reactions with isocyanides, CNR',yielded two types of products, namely the acyl-isocyanides Mo{q2-C(O)R}L(CO)(CNR')(PMe,) or theq2-iminoacyls Mo{q2-C(NR')R)L(CO),(PMe3) (R' = CNC6H,Me-2,6, CNC6H40Me-p, CNCH,Ph orCNC,H, 1) depending upon the nature of the bis(pyrazoly1)borate ligand and the R group.Kinetic studies ofthe transformation Mo{q2-C(0)CH,SiMe,} { H,B(dmpz),}CO(CNR')(PMe,) --+ Mo{q2-C(NR')CH,-SiMe,} { H,B(drnpz),)(CO),(PMe,) (R' = 2,6-Me,C6H,) show first-order behaviour and are consistent witha mechanism involving deinsertion of CO to give a seven-co-ordinate alkyl intermediate in the rate-determiningstep.Transition-metal acyl complexes play an important role in anumber of organometallic reactions. Bidentate co-ordinationis usually the preferred binding mode of the acyl group incomplexes of the early transition metals,"2 including the 6dmetals. 3*4 Strong M-q2-C(0)R linkages are very oftenencountered and consequently many reactions of thesecompounds with Lewis bases proceed with substitution of otherligands without altering the co-ordination mode of the acylmoiety.Recent work from our laboratory has shown that theinteraction of the q 2-acyls Mo { q '-C(O)R} L(CO)(PMe,),L = unsubstituted and 3,5-dimethyl-substituted dihydro-bis(pyrazolyl)borate, H,B(pz), and H,B(dmpz), with CNBu'proceeds initially with PMe, displacement by the isocyanide,followed by isomerization to the thermodynamically morestable q'-iminoacyl-carbonyls Mo(~~-C(NBU')R}L(CO),-(PMe,). Since this report constitutes only the first well docu-mented example of an isomerization of this type, we havesought its generalization by the use of other isocyanides withdifferent electronic and steric properties and thereforemigrating capability.6 Here we discuss the results of this study,together with the outcome of the substitution reactions of theabove and other related q2-acyls of Mo with CO.Results and DiscussionThe new compounds described contain a bidentate bis(pyra-zoly1)borate ligand' and are of the types A-C.Scheme 1shows the synthetic procedure employed and includes alsothe combinations of the co-ligands which have been utilized.While acyls of composition M o { q '-C(O)R} L( CO)(PMe ,) ,(for every combination of L with R = Me, CH,SiMe3 orCH,CMe,) interact with CO to afford the correspondingdicarbonyl products A (Scheme l), the analogous reaction withisocyanides, CNR', may give compounds with structure Bor C.For example, in the H,B(pz), system all the reactionsinvestigated, which comprise those of Mo(q2-C(0)Me) { H,B-(pz),)(CO)(PMe,), with CNR' (R' = C6H,Me2-2,6 orC6H40Me-p) plus those of the neopentyl-derived q2-acyl withCNR' (R' = CH2Ph, C6H11 or C6H,Me,-2,6), provide theq2-iminoacyl (structure C) even when they are performed atlow temperatures (ca. - 10 "C). Hence, it seems clear that, forthese conversions, the initial substitution of PMe, by CNR'is followed by fast acyl-to-iminoacyl rearrangement to the1234567891011121314151617ARA 6' ,RL R COCNR'MeCH2CMe3MeCH2SiMe3CH2CMe3CH2SiMe3CH2CMe3CH2CMe3CH2CMe3MeMeCH2CMe3CH2CMe3CH2CMe3MeMeCH$3~!e3cococococoCNC6H,Me2-2,6CNCHghCNC6H3Me,-2,6CNC6H3Me,-2,6CNC,H,OMe-pCNCl-PhCNC6H3Me2-2.6C NC6H,Me,-2, 6CN C6H,0M e-pCNC6H,Me,-2,6CNC6H11CNC6H1,110; 11; 12; 13;14; 15; 18; 17Scheme 1 (i) CNR'; (ii) heatobserved q2-iminoacyl products.These results are in agreementwith those found in the interaction of the molybdenum q2-acylswith CNBu' although for the latter systems the bulkiness of theisocyanide fragment allows the isolation of stable q2-acyl-isocyanide compounds of type B.5J. Chem. SOC., Dalton Trans., 1996, Pages 3687-3691 368In turn, for the H,B(dmpz), system the interaction ofMo{q2-C(0)Me){H2B(dmpz)2)(CO)(PMe3)2 with CNR(R' = C6H,Me2-2,6 or C,H,OMe-p) also furnishes directlyq2-iminoacyls of structure C whilst treatment of Mo{q2-C(O)CH,SiMe,) { H,B(~~~z),)(CO)(PM~,)~ with CNC6H3-Me2-2,6 and of Mo{q2-C(O)CH,CMe,){H,B(dmpz),)-(CO)(PMe,), with CNR' (R = CH,Ph, C,H,, or C6H,Me,-2,6) allows the isolation of the expected q2-acyls with structureB.Hence, the facility with which the transformation of theacyls Mo{q2-C(O)R)(CNR') into the iminoacyls Mo{q2-C(NR')R)(CO) takesplace varies in the order H,B(pz), > H,B-(dmpz), and Me > CH,SiMe3 > CH2CMe3. Iminoacyl form-ation is therefore favoured for the least sterically demandingcombination of the L and R fragments. Finally, in this regard, itshould be mentioned that complex 6 converts slowly at roomtemperature into 17, while the q2-acyls derived from the bulkierneopentyl group, 7-9, are stable at room temperature withrespect to their transformation into the corresponding q2-iminoacyls.This rearrangement occurs however, at highertemperatures (ca. 60 "C) but it is still so slow that a competitivereaction leading to hydroboration of the q2-acyl fragment occurspreferentially. *All the transformations represented in Scheme 1 give highyields of the corresponding products which are usually isolatedby crystallization from Et20 or light-petroleum (b.p. 40-6O0C)-Et,O mixtures, in the form of red-orange or yellowcrystalline solids. They can be readily characterized byspectroscopy (see Experimental section). The IR spectra of theacyls Mo(q2-C(O)R}L(L')(CO)PMe, (L' = PMe,, startingmaterial; CO, structure A; CNR', B) display v(CO),,,, in theexpected region' of 1625-1450 cm-'.Within this range thestretching frequency shifts to lower wavenumbers as theelectron-donor properties of L' increase: L' = CO, 1600-1 560;CNR', 1580-1 550; PMe,, 1500-1480 cm-'. This clearly reflectsan increase in the same direction of the back donation from themetal centre to the acyl ligand. A parallel decrease is observed inthe value of v(C0) for the terminal carbonyl (ca. 1940 and 1850,L = CO; 1800, CNR'; 1775 cm-', PMe,). The q2-iminoacyls(structure C) are characterized by two strong terminal carbonylstretchings in the vicinity of 1925 and 1800 cm-' as well as bya medium-intensity absorption at ca. 1700 cm--' due to theiminoacyl ligand.This supports the dihapto binding modeproposed for this functionality. '3' Since compounds withstructures A and C have the same stereochemistry and differonly in the nature of the Mo-q2-C(X)R linkage, a comparisonof the donor properties of these two functionalities can beattempted. The already noted values of v(C0) (1940, 1850 forthe q2-acyls; 1925, 1800 cm-', q2-iminoacyls) indicate anoverall higher donor ability of the q2-iminoacyl entities ascompared to the analogous q2-acyl groups.Best support for the structures assigned to the abovecomplexes comes from NMR studies. Thus the q2-acyls displaythe 13C-{1H) resonance of the acyl carbon in the region 6 275-250, while for the q2-iminoacyls the Mo-',C(NR')R signalappears at 6 210-190. The above values are well in the rangecharacteristic of compounds of this type.For the dicarbonylcomplexes (A and C) the two carbonyls and the two pyrazolylrings of the L ligand are equivalent at room temperature. As forother q2-acyl complexes, this is probably due to a relatively low-energy fluxional process which creates an effective plane ofsymmetry. ' OAs already mentioned, of the isolated compounds withstructure type B the H,B(dmpz),-CH,SiMe, derivative 6 isthermally stable at room temperature for moderate intervals oftime, although it is converted into the q2-iminoacyl isomer 17over a period of several hours (t+ = 0.75 h). In order to gainmechanistic information on this isomerization reaction, inparticular with respect to the influence of the isocyanide ligandon the reaction rate, kinetic studies have been undertaken.Twoclosely related q 2-acyl-isocyanide derivatives were chosen:0.5-0.5- 0" 5 -1.5 v c --2.5 IL , ,,A f-3.5 i l L . l I I I I I I , l I I 1 , l . /0 400 800 1200t h i nFig. 1 First-order kinetic plots for the transformation of complex6 (B) and Mo{ q 2-C(0)CH2SiMe, 1 { H,B(dmpz), )(CO)(CNBu')-(PMe,) (A) into the corresponding iminoacyl complexescomplex 6 and the already reported Mo{q2-C(O)CH,SiMe,}-(H2B(pz)2)(CO)(CNBu')(PMe3).5 As can be seen, theycontain identical sets of co-ligands with the only exception ofthe isocyanide groups, CNR' (R = C6H,Me,-2,6 or Bu'), theirchoice being influenced by their very different insertionaptitudes. The greater propensity of the aromatic isocyanide,CNC6H,Me,-2,6, to undergo insertion reactions, as comparedwith the aliphatic CNBu', is well documented.6,"The rates of the two reactions can be conveniently measuredat room temperature by 31P-(1H) NMR spectroscopy.Bothtransformations follow first-order kinetics, the analysis of thedata (Fig. 1) recorded over a period of ca. four half-livesyielding rate constants of 1.84 x lo-, and 1.60 x s-' forthe CNBu' and CNC,H,Me,-2,6 derivatives. As expected,CNC,H,Me,-2,6 inserts faster than CNBu', but the differenceof only one order of magnitude in the kobs values seems inagreement with a rate-determining step involving deinsertion ofCO from the original q2-acyl to generate a sterically congestedseven-co-ordinate alkyl intermediate, followed by fast iso-cyanide insertion.This mechanistic hypothesis also findssupport in the already cited influence of the steric effects ofthe L and R fragments on the reaction rate.Experiment a1Microanalyses were carried out by Pascher MicroanalyticalLaboratories, Remagen, Germany, and the Analytical Serviceof the University of Seville. Infrared spectra were recorded asNujol mulls or in an appropriate solvent on a Perkin-Elmermodel 684 spectrometer. The 'H, I3C and ,'P NMR spectrawere run on a Varian XL-200 or on Bruker AMX-300 or AMX-500 instruments. The 31P shifts were referenced to external85 H,PO,, 'H and I3C shifts to the residual signals of thedeuteriated solvents employed, and are all reported in ppmdownfield from SiMe,.All preparations and manipulations were carried out underoxygen-free nitrogen or argon, following conventionalSchlenk techniques.Solvents were dried and degassed beforeuse.All reagents were either obtained from commercial suppliersor prepared according to published procedures. The com-plex Mo{q2-C(0)CH2SiMe,){H2B(dmpz)2)(CO)(CNBu')-(PMe,) used for the kinetic studies was prepared asreported previously. Analytical and spectroscopic data for thenew complexes are given in Tables 1 and 2.PreparationsMo{q2-C(0)R}L(CO),(PMe3), (structure A). Through asolution of Mo{q2-C(0)Me) {H2B(pz)2)(CO)(PMe,)2 (0.46g, 0.5 mmol) in tetrahydrofuran (thf) (50 cm3), carbonmonoxide was slowly bubbled at room temperature until the3688 J. Chem.SOC., Dalton Trans., 1996, Pages 3687-369Table 1 Analytical, IR and 'H NMR data for the compounds Mo(q2-C(O)R)L(CO),(PMe,), Mo{q2-C(0)R)L(CO)(CNR')(PMe3) andMo{q2-C(NR')R}L(CO),(PMe,)Analysis() aCompound C H N123456 d789101112131415 =161738.1(37.3)43.3(43.0)43.0(43.0)43.4(43.9)47.3(47.5)51.9(51.8)54.3(54.3)53.1(53.0)55.0(55.0)48.0(48.4)45.7(45.9)51.8(51.2)49.8(49.8)52.3(52.0)52.1(52.0)49.9(49.7)51.1(5 1.8)5.0 13.6(4.8) (13.4)6.0 11.8(5.9) (11.8)6.3 11.9(5.9) (11.8)6.9 10.6(6.6) (10.3)7.1 9.9(6.8) (10.6)6.7 10.6(6.9) (10.8)7.0 11.0(7.0) (11.3)7.8 11.7(7.8) (11.5)7.1 10.7(7.2) (11.0)5.5 12.9(5.6) (13.4)5.3 13.7(5.2) (13.4)6.2 11.5(6.3) (12.4)7.2 12.6(7.1) (12.6)6.6 12.1(6.5) (12.1)6.6 12.3(6.4) (12.1)5.6 12.2(6.0) (12.1)6.9 11.0(6.9) (10.8)IR data (Nujol)/cm-'vco~ ( c N R , )1940s1865s1934s1848s1934s1837s1934s1835s1940s1848s1810s2038s1820s2054s1804s208 1 s1822s2040s1932s1800s1937s1816s1928s1802s1932s1810s1924s1806s1932s1800s1914s181 1sVCORVIC(NR')Rl1600m1584m1600m1562m1600w1560w1567m1569m1580m1696m1720m1716m1718m1684m1691m1700m'HNMR(6)PMe,b R'2.73 (s)1.04 (s, CMe,),3.41 (s, CH,)2.85 (s)0.17 (s, SiMe,),3.30 (s, CH,)1.09 (s, CMe,),3.62(s, CH,)0.28 (s), 2.96, 3.76(d, 12.7, CH,)1.20 (s, CMe,), 3.22,3.82 (d, 17.8, CH,)1.28 (s, CMe,), 3.39,3.94 (d, 17.7, CH,)1.20 (s, CMe,), 3.42,4.01 (d, 17.9, CH,)2.34 (s)2.65 (s)1.06 (s, CMe,),2.89 (s)1.15(s, CMe,),2.90 (s)1.05 (s, CMe,),3.13 (s)2.92 (s)2.93 (s)0.05 (SiMe,),3.10 (s)R'2.25 (s,2 Me),6.75 (m, Ph)16.2, JHp = 3.2), 7.0(m, Ph)1.17, 1.38 (m), 1.60,3.35 (m)2.26 (s), 6.76 (AB,)(JAB = 7.7)1.63 (s), 6.75 (AB,)(JAB = 7.7)3.10 (s), 6.17 (m),6.44 (m)4.35 (s), 6.84 (m),6.96 (m)0.47 (m), 0.86 (m),1.31 (m), 3.27 (m)1.82 (s), 6.77 (s)4.25,4.29 (JHH =1.54 (s), 6.91 (s)3.10 (s), 6.17 (m),6.42 (m)2.08 (s), 6.78 (m)~ ~~L'5.91 (t), 7.41, 7.50 (d, 2.1)5.92 (t), 7.45,7.47 (d, 2.1)2.22, 2.25, 5.60 (s)2.26,2.32, 5.63 (s)2.25,2.28, 5.62 (s)2.19,2.30,2.34,2.59, 5.70,5.73 (s)2.16, 2.31, 2.34,2.53, 5.67,5.71 (s)2.24, 3.31,2.35,2.58, 5.68,5.73 (s)2.17, 2.26, 2.27, 2.31, 5.64,5.67 (s)5.87 (t), 7.52, 7.55 (d, 2.1)5.91,7.45, 7.67 (d, 2.1)5.88 (t), 7.38,7.51 (d, 2.1)6.00 (t), 7.51,7.65 (d, 2.1)5.94 (t), 7.51, 7.80 (d, 2.1)2.09,2.24, 5.71 (s)2.01, 2.37, 5.65 (s)2.21, 2.51, 5.70 (s)Solvent C6D6 unless otherwise stated.Calculated values in parentheses. Jc,/Hz in parentheses. JHH/Hz in parentheses. NMR data in C6D,CD3.NMR data in (CD,),CO.solution changed from red to yellow (2 h). The solvent wasthen removed in uacuo and the residue extracted with lightpetroleum-Et,O (1 : 1). Centrifugation and cooling at - 15 "Cafforded Mo~q2-C(0)Me~~H~B(pz)~~(CO)~(PMe~) 1, asyellow crystals in 70 yield.Complexes 2-5 were similarlyobtained as yellow crystals by carbonylation of thecorresponding monocarbonyl derivatives. They required,however, longer reaction times or alternatively higher COpressures ( 3 4 atm, ca. 3 x lO-'-4 x Pa), although in thelatter case the reaction yields were somewhat lower.Mo{q2-C(O)R}L(CO)(CNR')(PMe,) (structure B). Thecomplex Mo{q2-C(0)CH,CMe3} {H,B(dmpz),)(CO)-(PMe,),' (0.58 g, 1 mmol) was dissolved in thf (60 cm3)at room temperature and neat CNCH,Ph (0.1 cm3, 1mmol) was added directly to the stirred solution. After 15 minthe reaction mixture changed from red to dark yellow. Thesolvent was removed in oarno to produce a brown solid, whichwas crystallized from light petroleum-Et,O (2 : 1) to affordorange crystals of 7 in 60 yield.Adding the appropriate CNR' ligand to Mo(q2-C(0)CH,C-Me,) (H,B(dmpz),)(CO)(PMe,), allowed the preparation ofcomplexes 8 and 9 by the same procedure as orange crystals.They were isolated by crystallization from light petroleum-Et,O (1 : 1 ) in 78 yield (8) and from Et,O in 63 yield (9).Thesynthesis of the CH,SiMe3 derivative, 6, was accomplishedby the above procedure using Mo{ q2-C(0)CH,SiMe,}{ H,B-(dmpz),}(CO)(PMe,), ' as the starting material, but in orderto avoid further reactivity temperatures below 5 "C were,however, required during the work-up process. It was isolatedas orange crystals in 85 yield.Mo{q2-C(NR')R}L(CO),(PMej) (structure C). The com-pound CNC6H3Me,-2,6 (0.13 g, 1 mmol) was dissolved in thf(40 cm3) at room temperature and Mo{q2-C(0)CH,CMe3}-{H2B(p~)2}(CO)(PMe3), added.The resulting mixture wasstirred for 1-2 h at 60°C, the solvent was removed underreduced pressure and the residue extracted with light petroleum.Centrifugation and cooling at -35 "C afforded 14 as orangecrystals in 41 yield.Using the appropriate molybdenum complex ' and CNR' thefollowing compounds were obtained by the above procedure:10 (50), 11 (70), 12 (54), 13 (57), 15 (78), 16 (51) and 17 (90yield). They were isolated as orange crystalline solids from lightpetroleum with the only exception of the less-soluble derivative12, which required light petroleum-Et,O (3 : 1).Kinetic studies of the isomerization of the dihaptoacyl Mo{q2-C(0)CHfiiMe3}{H2B(dmpz)2~(CNR')(CO)(PMe~ (R' = Butor C6H3Me2-2,6) into the corresponding iminoacyl Mo{q2-In both cases, the disappearance of the acyl isomer wasmonitored at 24 "C by "P-{'H) NMR spectroscopy for aC(NR)CH2siMe,}CH2BO,)(CO),(PMe3) 1J.Chem. SOC., Dalton Trans., 1996, Pages 3687-3691 368Table 2 The "P-{ 'H) and 13C-( 'H} NMR data for compounds 1-17"C-{ 'H) (6),lP-{ 'H}Compound (6)12345678'9101112131415'161712.1 (s)10.2 (s)15.3 (s)12.1 (s)13.0 (s)1 1.2 (s)7.5 (s)13.7 (s)12.2 (s)3.2 (s)4.0 (s)2.2 (s)4.5 (s)0.9 (s)12.4 (s)7.6 (s)1.4 (s)R31.2 (s)29.5 (s, CMe,), 32.8 (s,CMe,), 60.2 (s, CH,)32.4 (s)-0.9 (s, SiMe,), 40.029.1 (s, CMe,), 3 1.6 (s,CMe,), 60.9 (s, CH,)-0.6 (s, SiMe,), 39.06, CH,)6, CH2)17.6 29.4(s, CMe,), 31.6 (s,(d, 28) m e , ) , 60.2 (s, CH,)17.5 29.5(s, CMe,), 31.6(s,(d, 28) CMe,), 60.1 (s, CH,)17.9(d, 29)29.6 (s, CMe,), 32.0 (s,CMe,), 61.0 (s, CH,)16.1 21.3(s)( 4 25)16.7 21.3 (s)(d, 27)17.2 30.1 (s, CMe,), 32.8 (s,(d, 26) me3),44.2(s,CH,)15.5(d, 24) CMe3),47.4(s, CH,)29.9 (s, CMe,), 33.9 (s,17.5 23.8 (s)(d, 28)17.7 23.2(s)(d, 28)16.0 -0.7 (s, SiMe,), 28.7(d, 23) 6, CH,)N-N R'" CX/C(X)R '105.0, 136.4, 143.3 (s)105.2, 136.5, 143.4 (s)12.6, 14.0(s, Me), 106.8, (s,CH), 144.9, 150.5 (s, CMe)14.4, 12.7 (s, Me), 106.3(s, CH), 149.8, 143.5 (s, CMe)12.6, 14.1 (s, Me), 106.3(s, CH), 143.4,149.7 (s, CMe)Me), 106.3, 105.9(s, CH),143.0, 143.4, 150.4, 150.86, m e )12.6, 12.8, 14.2, 14.8 (s, 192.2 (d, 26, CNR')Me), 105.9, 106.2 (s, CH), 233.3 (d, 20, CO)142.9, 143.2, 148.7, 150.7 268.3 (d, 13, COR)12.6, 12.8, 14.3, 14.7 (s, 183.6 (d, 27, CNR')Me), 105.8, 106.3 (s, CH), 233.3 (d, 21, CO)142.8, 143.1, 148.5, 150.8 2CH, ofC,H,,), 54.6(s,CH 269.5(d, 13, COR)13.0, 13.1, 14.6, 14.8 (s, 199.8 (d, 27, CNR')Me), 106.2, 106.5 (s, CH), 232.7 (d, 21, CO)143.2, 143.5, 149.1, 150.8 266.7 (d, 12, COR)6, m e )104.7, 136.4, 143.9 (s, CH)230.4 (d, 17, CO)254.0 (d, 13, COR)23 1.2 (d, 18, CO)255.8 (d, 12, COR)230.4 (d, 22, CO)262.0 (d, 11, COR)231.6 (d, 21, CO)258.1 (d, 10, COR)230.4 (d, 22, CO)260.8 (d, 10, COR)12.8, 12.9, 14.8, 14.9(~, 18.6(~, C,He,), 126.0,129.3 (s, 3CH ofC,H3Me,),132.6 (s, 2CCH, of C6H,Me,)48.5 (s, CH,Ph), 127.0 (s,2CH of Ph), 128.0 (s, CH ofPh), 128.7 (s, 2CH of Ph),23.5(s,2CH2 ofC6Hll), 24.7(CH, of C6Hll), 33.7 (s,(s, m e ) 134.6 (s, Cipso)6, m e ) Of C6HI 1)18.2 (s, 2CH3 Of C,H,Me,),126.1 (s, CH Of C,Me,),128.4 (s, 2CH Of C6H3Me,),130.6 (s, Cipso), 132.7 (s,CCH, of C,H,Me,)17.6 (s, 2CH3 Of Ce,),125.2 (S, CH Of C,H,Me,),128.0 (S, 2CH Of C6H3Me2),130.2 (s, CCH, of C,H,Me,)123.2(~,2CHofPh), 132.2(s, 236.1 (d, 19, CO)Cipso), 157.5 (s, COMe)52.3 (d, 3, CH,Ph), 126.8 (s, 201.3 d, 12, C(NR')R2CH of Ph), 128.2 238.3 (d, 18, CO)(s, 3CH of Ph), 135.8 (s, Cipso)206.7 (d, 11, COR)234.8 (d, 17, c o )104.7, 136.1, 143.7(s,CH) 54.4(s, CH,OPh), 114.3, 202.2 d, 12, C(NR')R104.3, 136.1, 143.7 (s, CH)104.3, 136.0, 144.1 (s, CH) 24.7(s,2CH20fC6H11),25.1 193.7 d, 11, C(NR')R2CH, of C6H1 '), 57.6 (s,18.2 (s, 2CH, O f C,H,Me,),125.3 (s, CH of C,H,Me,),128.0 (s, 2CH Of C,H,Me2),129.9 (s, CCH, of C,H,Me,)17.9 (s, 2CH3 Of C ~ H ~ M ~ Z ) ,125.9 (s, CH Of C6H,Me2),129.1 (s, 2CH of C6H3Me2),13 1.2 (s, 2CCH, Of C6H,Me,)54.3 (s, CH,O), 114.6, 122.6(s, 2CH of Ph), 131.8 (s,18.4 (s, X H , of C,H,Me,),124.9 (s, CH of C,H,Me,),128.5 (s, 2CH Of C ~ H J M ~ ~ ) ,130.1 (s, 2CCH, of C6H3Me2)(s, CH2 Of C,H11), 31.4 (s, 238.6 (d, 19, CO)3CH Of C6H11)104.6, 136.7, 144.2 (s, CH) 206.5 d, 11, C(NR')R238.0 (d, 17, CO)13.6, 15.7 (s, Me), 107.3 (s,CH), 145.2, 151.6 (s, m e )21 1.6 d, 12, C(NR')R236.5 (d, 20, CO)14.5, 13.0(s, Me), 105.8(s, CH), 143.9, 149.2 (s,m e ) Cipso), 157.0 (COMe)13.6, 16.6 (s, Me), 106.9(S, CH), 145.7, 151.7 (s,m e )205.5 d, 8, C(NR')R235.8 (d, 20, CO)204.8 d, 12, C(NR')R240.0 (d, 18, CO)Solvent C6D6 unless otherwise stated." Jcp in parentheses. ' In C,D,CD,. ' In (CD,),CO.period of about four half-lives. The two reactions were wellbehaved and produced the iminoacyl isomers as the onlydetectable products. Duplicate experiments were performed inboth cases. In a typical experiment, a solution of complex 6 inC,D, (around 0.08 mol dm-3) was transferred under N, into a5 mm NMR tube which was then frozen and degassed. In orderto avoid possible interference from an internal reference, acapillary containing a solution of PPh, in acetone (around 0.04mol dmP3) was introduced inside the NMR tube and employedas an external standard.The tube was sealed and placed into aNMR probe at 24 "C (uncertainty k 0.1 "C) and its 31P-(1H}NMR spectrum recorded on a Bruker AMX-500 spectrometer.In each experiment the acquisition was performed using aninterscan delay of about five times the slowest relaxation timeof the 31P nuclei.AcknowledgementsWe thank the Direccibn General de Investigacion Cientifica yTkcnica (Grant No. PB94-1436) and EU (Human MobilityProgramme Proposal No. ERB4050PL920650). We alsoacknowledge Junta de Andalucia for the award of research36W J. Chem. SOC., Dalton Trans., 1996, Pages 3687-369fellowships.Thanks are also due to the University of Sevilla forfree access to its analytical and NMR facilities.References1 L. D. Durfee and I. P. Rothwell, Chem. Reu., 1988,88, 1059.2 G. Fachinetti and C. J. Floriani, J. Chem. SOC., Dalton Trans., 1977,1946; J. A. Marsella, K. G. Moloy and K. G. Caulton, J. Organomet.Chem., 1980, 201, 389; J. M. Manriquez, D. R. McAlister, R. D.Sanner and J. E. Bercaw, J. Am. Chem. SOC., 1976,98,6733; 1978,100,2716; P. T. Wolczanski and J. E. Bercaw, Ace. Chem. Res., 1980,13, 121; G. Erker, Acc. Chem. Res., 1984, 17, 103 and refs. therein;F. Calderazzo, Angew. Chem., Int. Ed. Engl., 1977,89,299.3 E . Carmona, G. Wilkinson, R. D. Rogers, W. E. Hunter, M. J.Zaworotko and J. L. Atwood, J. Chem. SOC., Dalton Trans., 1980,229; E.Carmona, L. J. Sanchez, J. M. Marin, M. L. Poveda, J. L.Atwood, R. D. Riester and R. D. Rogers, J. Am. Chem. SOC., 1984,106, 3214; E. Carmona and L. J. Sanchez, Polyhedron, 1988, 7,163; E. Carmona, L. Contreras, M. L. Poveda, L. J. Sanchez,J. L. Atwood and R. D. Rogers, Organometallics, 1991, 10, 61;E. Carmona, L. Contreras, M. L. Poveda and L. J. Sanchez, J. Am.Chem. SOC., 1991, 113,4322; L. Contreras, A. Monge, A. Pizzano,C. Ruiz, L. J. Sanchez and E. Carmona, Organometallics, 1992,11, 3971.4 C. A. Russik, T. L. Tonker and J. L. Templeton, J. Am. Chem. SOC.,1986, 108, 4652; A. S. Gamble, P. S. White and J. L. Templeton,Organometallics, 1991, 10, 693; F. R. Kriessl, W. J. Sieber, M.Wolfggruber and J. Riede, Angew. Chem., Int. Ed. Engl., 1994, 23,640; T. Desmond, F. J. Lalor, G. Ferguson, B. Ruhl and M. Parvez,J. Chem. SOC., Chem. Commun., 1983,55; H. G. Alt, J. Organomet.Chem., 1977,127,349.5 A. Pizzano, L. J. Sanchez, M. Altmann, A. Monge, C. Ruiz andE. Carmona, J. Am. Chem. SOC., 1995,117,1795.6 P. P. M. de Lange, H. W. Friihauf, M. J. A. Kraakman, M. wanWijnkoop, M. Kranenburg A. H. J. P. Groot and K. VreiZe,Organometallics, 1993, 12, 417; P. P. M. de Lange, M. wanWijnkoop, H. W. Friihauf and K. Vreize, Organometallics, 1993,12,428; P. P. M. de Lange, R. P. de Boer, M. wan Wijnkoop, J. M.Emsting, H. W. Friihauf and K. Vreize, Organometallics, 1993, 12,440.7 S. Trofimenko, Chem. Rev., 1993,93,943.8 A. Pizzano, L. J. Sanchez, E. GutiCrrez, A. Monge and E. Carmona,Organometallics, 1995,14, 14.9 E. Carmona, P. Palma, M. Paneque and M. L. PovedaOrganometallics, 1990,9, 583.10 M. D. Curtis, K.-B. Shiuand W. M. Butler, J. Am. Chem. SOC., 1986,108, 1550; C. A. Rusik, M. A. Collins, A. S. Gamble, T. L. Tonkerand J. L. Templeton, J. Am. Chem. SOC., 1989,111,2550.11 P. M. Treichel, K. P. Wagner and R. W. Hess, Znorg. Chem., 1973,12, 1471; J. Dupont and M. Heffer, J. Chem. SOC., Dalton Trans.,1990, 3193; E. Singleton and H. E. Ooasthuizen, Adu. Organomet.Chem., 1983,22,209.Received 25th March 1996; Paper 6/02075EJ. Chem. SOC., Dalton Trans., 1996, Pages 3687-3691 369
机译:钼q2-酰基配合物的反应性研究。q2-酰基到q2=亚氨基酰基异构化在与异氰化物反应中的动力学Maria del Mar Conejo, Antonio Pizzano, Luis J. Sanchez * and Ernest0 Carmona *Departamen to Quimica Inorganica-Instituto de Investigaciones Quimicas, Universidad deSevilla- Consejo Superior de Investigaciones CientiJicas, Apdo.553, 41071 塞维利亚, 西班牙用一氧化碳处理二甲酰基 [Mo{q2-C(0)R)L(C0)(PMe3),] 得到二羰基衍生物 [Mo{q2-C(0)R}L(C0),(PMe3)] [L = H,B(pz) 或 H,B(dmpz),; pz = 吡唑基,dmpz = 33-二甲基吡唑基;R = Me, CH,SiMe3 或 CH,CMe,]。与异氰化物的类似反应,CNR',产生两种类型的产物,即酰基异氰化物[Mo{q2-C(O)R}L(CO)(CNR')(PMe,)]或q2-亚氨基酰基[Mo{q2-C(NR')R)L(CO),(PMe3)](R' = CNC6H,Me-2,6,CNC6H40Me-p,CNCH,Ph或CNC,H,1),具体取决于双(吡唑1)硼酸配体和R基团的性质。转化的动力学研究 [Mo{q2-C(0)CH,SiMe,} { H,B(dmpz),}CO(CNR')(PMe,)] --+ [Mo{q2-C(NR')CH,-SiMe,} { H,B(drnpz),)(CO),(PMe,)] (R' = 2,6-Me,C6H,) 显示出一阶行为,并且与涉及 CO 脱嵌以在速率决定步骤中产生七配位烷基中间体的机制一致。过渡金属酰基络合物在许多有机金属反应中起着重要作用。二合物配位通常是早期过渡金属酰基不络合物的首选结合模式,“2 包括 6dmetals。3*4 经常遇到强的 M-q2-C(0)R 键,因此这些化合物与路易斯碱的许多反应在不改变酰基部分的配位模式的情况下进行其他配体的取代。我们实验室最近的研究表明,q 2-酰基 [Mo { q '-C(O)R} L(CO)(PMe,),][L = 未取代和 3,5-二甲基取代的二氢双(吡唑基)硼酸盐,H,B(pz)和H,B(dmpz),] 与 CNBu 的相互作用最初以 PMe 进行,被异氰化物置换,然后异构化为热力学上更稳定的 q'-亚氨基酰基-羰基 [Mo(~~-C(NBU')R}L(CO),-(PMe,)]。由于本报告仅是该类型异构化的第一个有据可查的例子,因此我们通过使用其他具有不同电子和空间特性的异氰化物来寻求其推广,因此具有迁移能力.6 在这里,我们讨论了这项研究的结果,以及上述和其他相关 Mo 与 CO 的 q2-酰基的取代反应的结果.结果与探讨所述新化合物含有双(吡喃唑唑1)硼酸盐配体',属于A-C型。方案1显示了所采用的合成程序,还包括已使用的共配体的组合。而酰基组成 [M o { q '-C(O)R} L( CO)(PMe ,) ,](对于 L 与 R = Me, CH,SiMe3 或 CH,CMe,) 的每种组合,与 CO 相互作用以提供相应的二羰基产物 A(方案 l),与异氰化物的类似反应,CNR',可以得到结构为 Bor C 的化合物。 包括具有CNR'(R' = C6H,Me2-2,6或C6H40Me-p)的新戊基衍生的q2-酰基与CNR'(R' = CH2Ph,C6H11或C6H,Me,-2,6)的[Mo(q2-C(0)Me){H,B-(pz),)(CO)(PMe,),]的那些,即使在低温(约-10“C)下进行,也提供q2-亚氨基酰基(结构C)。因此,似乎很清楚,对于这些转化,CNR'对PMe的初始取代随后是快速酰基到亚氨基酰基重排到1234567891011121314151617ARA 6' ,RL R COCNR'MeCH2CMe3MeCH2SiMe3CH2CMe3CH2SiMe3CH2CMe3CH2CMe3CH2CMe3CH2CMe3CMe3CMe3CH2CMe3CH2CMe3MeMeCH$3~!e3可可可可CNC6H,Me2-2,6CNCHghCNC6H3Me,-2,6CNC6H3Me,-2,6CNC,H,OMe-pCNCl-&PhCNC6H3Me2-2.6C NC6H,Me,-2, 6CN C6H,0M e-pCNC6H,Me,-2,6CNC6H11CNC6H1,110;11;12;13;]14;15;18;17方案1(i)CNR';(ii)热观察到的Q2-亚氨基酰基产物。这些结果与钼q2-酰基与CNBu'相互作用的结果一致,尽管对于后者系统,异氰化物片段的体积允许分离B.5J型稳定的q2-酰基-异氰化物化合物。Chem. SOC., Dalton Trans.,1996年,第3687-3691页 368反过来,对于H,B(dmpz),系统[Mo{q2-C(0)Me){H2B(dmpz)2)(CO)(PMe3)2]与CNR(R' = C6H,Me2-2,6或C,H,OMe-p)的相互作用也直接提供结构C的q2-亚氨基,而处理[Mo{q2-C(O)CH,SiMe,) { H,B(~~~z),)(CO)(PM~,)~]与CNC6H3-Me2-2,6和[Mo{q2-C(O)CH,CMe,){H,B(dmpz),)-(CO)(PMe,),]与CNR' (R = CH,Ph,C,H,或C6H,Me,-2,6)允许分离具有结构B的预期q2-酰基>。B-(dmpz)和Me>CH,SiMe3>CH2CMe3。因此,亚氨酰基的形成有利于L和R片段的空间要求最低的组合。最后,在这方面,应该提到的是,配合物 6 在室温下缓慢转化为 17,而源自块状新戊基 7-9 的 q2-酰基在室温下相对于它们转化为相应的 q2-亚氨基酰基是稳定的。然而,这种重排发生在更高的温度(约60“C)下,但它仍然非常缓慢,以至于导致q2-酰基片段的硼氢化的竞争反应优先发生。*方案 1 中表示的所有转化都给出了相应产物的高产率,这些产物通常通过从 Et20 或轻质石油 (b.p. 40-6O0C)-Et,O 混合物中以红橙色或黄色结晶固体的形式结晶分离出来。它们可以很容易地通过光谱学进行表征(见实验部分)。茶酰基的红外光谱[Mo(q2-C(O)R}L(L')(CO)PMe,] (L' = PMe,, startingmaterial;CO, 结构A;CNR', B) 显示 v(CO),,,, 在 1625-1450 cm-' 的预期区域。在此范围内,随着L'的电子供体性质的增加,拉伸频率向较低的波数移动:L' = CO,1600-1 560;CNR',1580-1 550;PMe,, 1500-1480 cm-'.这清楚地反映了从金属中心到酰基配体的背部供体的相同方向的增加。观察到末端羰基的v(C0)值平行下降(约1940年和1850年,L = CO;1800,CNR';1775 cm-',PMe,)。q2-亚氨基酰基(结构C)的特征在于,在1925和1800 cm-'附近有两个强的末端羰基拉伸,并且由于亚氨基酰基配体在约1700 cm--'处被中等强度吸收。这支持为此功能建议的 dihapto 绑定模式。'3' 由于具有结构 A 和 C 的化合物具有相同的立体化学性质,并且仅在 Mo-q2-C(X)R 键的性质上有所不同,因此可以尝试比较这两种官能团的供体性质。已经注意到的v(C0)值(1940,1850为q2-酰基;1925,1800 cm-',q2-亚氨基酰基)表明,与类似的q2-酰基相比,q2-亚氨基酰基实体的整体供体能力更高。对分配给上述复合物的结构的最佳支持来自核磁共振研究。因此,q2-酰基在6 275-250区域显示酰基碳的13C-{1H)共振,而对于q2-亚氨基酰基,Mo-',C(NR')R信号出现在6 210-190区域。上述值完全在此类化合物的范围内。对于二羰基配合物(A 和 C),L 配体的两个羰基和两个吡唑基环在室温下是等效的。与其他q2-酰基配合物一样,这可能是由于相对低能的通量过程,它创造了一个有效的对称平面。'已经提到的OAs,在结构类型为B的分离化合物中,H,B(dmpz),-CH,SiMe,衍生物6在室温下保持中等时间间隔稳定,尽管它在几个小时内转化为q2-亚氨基酰基异构体17(t + = 0.75小时)。为了获得有关该异构化反应的机理信息,特别是关于异氰化物配体对反应速率的影响,已经进行了动力学研究。选取了2种密切相关的q 2-酰基异氰酸衍生物:0.5-0.5- 0“ 5 -1.5 v c --2.5 IL , ,,A f-3.5 i l L .l 我 我 我/0 400 800 1200t h i n图。1 配合物 6 (B) 和 [ Mo{ q 2-C(0)CH2SiMe, 1 { H,B(dmpz), )(CO)(CNBu')-(PMe,)] (A) 转化为相应的亚氨基酰基配合物复合物 6 和已经报道的 [Mo{q2-C(O)CH,SiMe,}-(H2B(pz)2)(CO)(CNBu')(PMe3)] 的一阶动力学图。5 可以看出,它们包含相同的配体组,唯一的例外是异氰化物基团 CNR' (R = C6H,Me,-2,6 或 Bu'),它们的选择受到它们非常不同的插入能力的影响。与脂肪族CNBu'相比,芳香族异氰化物CNC6H,Me,-2,6发生插入反应的倾向更大,这是有据可查的.6,“两种反应的速率可以在室温下通过31P-(1H)NMR波谱法方便地测量。两种变换都遵循一阶动力学,对CNBu'和CNC,H,Me,-2,6导数的大约四个半衰期产生率常数(1.84 x lo-和1.60 x s-')的分析(图1)。正如预期的那样,CNC,H,Me,-2,6 的插入速度比 CNBu' 快,但 kobs 值仅相差一个数量级似乎与速率决定步骤不一致,该步骤涉及从原始 q2-酰基中去除 CO 以生成空间充血的七配位烷基中间体,然后快速插入异氰化物。这种机理假设也得到了已经引用的L和R片段的空间效应对反应速率的影响的支持。实验a1微量分析由德国雷马根的Pascher微量分析实验室和塞维利亚大学的分析服务部门进行。红外光谱以 Nujol 铡或适当的溶剂记录在 Perkin-Elmermodel 684 光谱仪上。'H、I3C 和 'P NMR 波谱在瓦里安 XL-200 或布鲁克 AMX-300 或 AMX-500 仪器上运行。31P位移参考了外部85%的H,PO,'H和I3C位移到所用氘化溶剂的残余信号,并且均以SiMe的ppmdownfield报告。所有制备和操作均按照传统的舒伦克技术在无氧氮气或氩气下进行。溶剂在使用前经过干燥和脱气处理。所有试剂要么从商业供应商处获得,要么根据公布的程序制备。如前所述,制备了用于动力学研究的复合物[Mo{q2-C(0)CH2SiMe,){H2B(dmpz)2)(CO)(CNBu')-(PMe,)]。表1和表2给出了新配合物的分析和光谱数据。通过将[Mo{q2-C(0)Me){H2B(pz)2)(CO)(PMe,)2](0.46g,0.5mmol)在四氢呋喃(THF)(50cm3)中的溶解,将一氧化碳在室温下缓慢起泡,直到3688 J. Chem.SOC., Dalton Trans., 1996, Pages 3687-369表1化合物[Mo(q2-C(O)R)L(CO),(PMe,)]、[Mo{q2-C(0)R)L(CO)(CNR')(PMe3)]和[Mo{q2-C(NR')R}L(CO)的分析、IR和'H NMR数据,(下午,)]分析(%) a化合物 C H N123456 d789101112131415 =161738.1(37.3)43.3(43.0)43.0(43.0)43.4(43.9)47.3(47.5)51.9(51.8)54.3(54.3)53.1(53.0)55.0(55.0)48.0(48.4)45.7(45.9)51.8(51.2)49.8(49.8)52.3(52.0)52.1(52.0)49.9(49.7)51.1(5 1.8)5.0 13.6(4.8) (13.4)6.0 11.8(5.9) (11.8)6.3 11.9(5.9) (11.8)6.9 10.6(6.6) (10.3)7.1 9.9(6.8) (10.10.) 6)6.7 10.6(6.9) (10.8)7.0 11.0(7.0) (11.3)7.8 11.7(7.8) (11.5)7.1 10.7(7.2) (11.0)5.5 12.9(5.6) (13.4)5.3 13.7(5.2) (13.4)6.2 11.5(6.3) (12.4)7.2 12.6(7.1) (12.6)6.6 12.1(6.5) (12.1)6.6 12.3(6.4) (12.1)5.6 12.2(6.0) (12.1)6.9 11.0(6.9) (10.8)红外数据 (Nujol)/cm-'vco~ ( c N R , )1940s1865s1934s1848s1934s1837s1934s1835s1940s1848s1810s2038s1820s2054s1804s208 1 s1822s2040s1932s1800s1937s1816s1928s1802s1932s1810s1924s1806s1932s1800s1914s181 1sVCORVIC(NR')Rl1600m1584m1600m1562m1600w1560w1567m1569m1580m1696m1720m1716m1718m1684m1691m1700m'HNMR(6)PMe,b R'2.73 (s)1.04 (s, CMe,),3.41 (s, CH,)2.85 (s)0.17 (s, SiMe,),3.30 (s, CH,)1.09 (s, CMe,),3.62(s, CH,)0.28 (s), 2.96, 3.76(d, 12.7, CH,)1.20 (s, CMe,), 3.22,3.82 (d, 17.8, CH,)1.28 (s, CMe,), 3.39,3.94 (d, 17.7,CH,)1.20 (s, CMe,), 3.42,4.01 (d, 17.9, CH,)2.34 (s)2.65 (s)1.06 (s, CMe,),2.89 (s)1.15(s, CMe,),2.90 (s)1.05 (s, CMe,),3.13 (s)2.92 (s)2.93 (s)0.05 (SiMe,),3.10 (s)R'2.25 (s,2 Me),6.75 (m, Ph)16.2, JHp = 3.2), 7.0(m, Ph)1.17, 1.38 (m), 1.60,3.35 (m)2.26 (s), 6.76 (AB,)(JAB = 7.7)1.63 (秒), 6.75 (AB,)(JAB = 7.7)3.10 (秒), 6.17 (米),6.44 (米)4.35 (秒), 6.84 (米),6.96 (米)0.47 (米), 0.86 (米),1.31 (米), 3.27 (米)1.82 (秒), 6.77 (秒)4.25,4.29 (JHH =1.54 (秒), 6.91 (秒)3.10 (秒), 6.17 (米),6.42 (米)2.08 (秒), 6.78 (米)~~~L'5.91 (吨), 7.41, 7.50 (d, 2.1)5.92 (吨), 7.45,7.47 (二, 2.1)2.22, 2.25, 5.60 (秒)2.26,2.32, 5.63 (秒)2.25,2.28, 5.62 (秒)2.19,2.30,2.34,2.59, 5.70,5.73 (秒)2.16, 2.31, 2.34,2.53, 5.67,5.71 (秒)2.24, 3.31,2.35,2.58,5.68,5.73(千)2.17,2.26,2.27,2.31,5.64,5.67(千分)5.87(吨),7.52,7.55(千分,2.1)5.91,7.45,7.67(千分之一)5.88(千吨),7.38,7.51(千分,2.1)6.00(千吨),7.51,7.65(千分,2.1)5.94(千吨),7.51,7.80(千分,2.1)2.09,2.24,5.71(千分)2.01、2.37、5.65(千分)2.21、2.51、5.70(千分)除非另有说明。括号中的计算值。括号中的Jc,/Hz。括号中的 JHH/Hz。C6D,CD3中的NMR数据。(CD,),CO.溶液中的NMR数据从红色变为黄色(2 h)。然后将溶剂在uacuo中除去,残余物用轻石油-Et,O(1:1)提取。在-15“Cafforded[Mo~q2-C(0)Me~~H~B(pz)~~(CO)~(PMe~)]1下离心冷却,以70%的收率制得黄色晶体。配合物2-5通过相应单羰基衍生物的羰基化类似地获得黄色晶体。然而,它们需要更长的反应时间或更高的 COpressure(3 4 atm,约 3 x lO-'-4 x Pa),尽管在后一种情况下反应产率略低。[Mo{q2-C(O)R}L(CO)(CNR')(PMe,)](结构 B)。将配合物[Mo{q2-C(0)CH,CMe3}{H,B(dmpz),)(CO)-(PMe,),]'(0.58 g,1 mmol)在室温下溶于thf(60 cm3)中,并将纯CNCH,Ph(0.1 cm3,1mmol)直接加入搅拌溶液中。15分钟后反应混合物由红色变为深黄色。在oarno中除去溶剂以产生棕色固体,该固体由轻质石油-Et,O(2:1)结晶,得到7/60%产率的橙色晶体。将适当的CNR'配体添加到[Mo(q2-C(0)CH,C-Me,)(H,B(dmpz),)(CO)(PMe,),]中,可以通过与橙色晶体相同的程序制备配合物8和9。它们通过结晶从轻质石油-Et,O (1 : 1) 中分离出来,产率为 78% (8),从 Et,O 中分离出 63% 的产率 (9)。CH,SiMe3衍生物6的合成是通过上述程序完成的,使用[Mo{ q2-C(0)CH,SiMe,SiMe,}{ H,B-(dmpz),}(CO)(PMe,),]'作为起始材料,但为了避免进一步低于5“C的反应性温度,然而,在后处理过程中需要。它被分离为85%产率的橙色晶体。[Mo{q2-C(NR')R}L(CO),(PMej)](结构 C)。在室温下将 com-pound CNC6H3Me,-2,6(0.13 g,1 mmol)溶于 thf(40 cm3) 中,加入 [Mo{q2-C(0)CH,CMe3}-{H2B(p~)2}(CO)(PMe3),]。将所得混合物在60°C下搅拌1-2小时,减压除去溶剂,用轻质石油萃取残渣。在-35“C下离心和冷却,以41%的收率获得14个橙色晶体。使用适当的钼络合物'和CNR'通过上述程序获得以下化合物:10(50),11(70),12(54),13(57),15(78),16(51)和17(90%产率)。它们从轻质石油中分离出橙色结晶固体,唯一的例外是可溶性较差的衍生物12,它需要轻质石油-Et,O (3:1)。二haptoacyl [Mo{q2-C(0)CHfiiMe3}{H2B(dmpz)2~(CNR')(CO)(PMe~] (R' = Butor C6H3Me2-2,6)异构化为相应亚氨基酰基[Mo{q2-在这两种情况下,通过“P-{'H”核磁共振波谱对aC(NR)CH2siMe,}CH2BO,)(CO),(PMe3)1J.Chem. SOC., Dalton Trans., 1996年,第3687-3691页 368表2 化合物1-17“C-{ 'H)的”P-{'H)和13C-( 'H} NMR数据 (6),lP-{ 'H}化合物 (6)12345678'9101112131415'161712.1 (s)10.2 (s)15.3 (s)12.1 (s)13.0 (s)1 1.2 (s)7.5 (s)12.2 (s)4.0 (s)2.2 (s)4.5 (s)0.9 (s)12.4 (s)7.6 (s)1.4 (s)R31.2 (s)29.5 (s, CMe,), 32.8 (s,CMe,), 60.2 (s, CH,)32.4 (s)-0.9 (s, SiMe,), 40.029.1 (s, CMe,), 3 1.6 (s,CMe,), 60.9 (s, CH,)-0.6 (s, SiMe,), 39.06, CH,)6, CH2)17.6 29.4(s, CMe,), 31.6 (s,(d, 28) m e , ) , 60.2 (s, CH,)17.5 29.5(s, CMe,), 31.6(s,(d, 28) CMe,), 60.1 (s, CH,)17.9(d, 29)29.6 (s, CMe,), 32.0 (s,CMe,), 61.0 (s, CH,)16.1 21.3(s)( 4 25)16.7 21.3 (s)(d, 27)17.2 30.1 (s, CMe,), 32.8 (s,(d, 26) me3),44.2(s,CH,)15.5(d, 24) CMe3),47.4(s, CH,)29.9 (s, CMe,), 33.9 (s,17.5 23.8 (s)(d, 28)17.7 23.2(s)(d, 28)16.0 -0.7 (s, SiMe,), 28.7(d, 23) 6, CH,)N-N R'“ CX/C(X)R '105.0, 136.4, 143.3 (s)105.2, 136.5, 143.4 (s)12.6, 14.0(s, Me), 106.8, (s,CH), 144.9, 150.5 (s, CMe)14.4, 12.7 (s, Me), 106.3(s, CH), 149.8, 143.5 (s, CMe)12.6, 14.1 (s, Me), 106.3(s, CH), 143.4,149.7 (s, CMe)Me), 106.3, 105.9(s, CH),143.0, 143.4, 150.4, 150.86, m e )12.6, 12.8, 14.2, 14.8 (s, 192.2 (d, 26, CNR')Me), 105.9, 106.2 (s, CH), 233.3 (d, 20, CO)142.9, 143.2, 148.7, 150.7 268.3 (d, 13, COR)12.6, 12.8, 14.3, 14.7 (s, 183.6 (d, 27, CNR')Me), 105.8, 106.3 (s, CH), 233.3 (d, 21, CO)142.8, 143.1, 148.5, 150.8 2CH, ofC,H,,), 54.6(s,CH 269.5(d, 13, COR)13.0, 13.1, 14.6, 14.8 (s, 199.8 (d, 27, CNR')Me), 106.2, 106.5 (s, CH), 232.7 (d, 21, CO)143.2, 143.5, 149.1, 150.8 266.7 (d, 12, COR)6, m e )104.7, 136.4, 143.9 (s, CH)230.4 (d, 17, CO)254.0 (d, 13, COR)23 1.2 (d, 18, CO)255.8 (d, 12, COR)230.4 (d, 22, CO)262.0 (d, 11, COR)231.6 (d, 21, CO)258.1 (d, 10, COR)230.4 (d, 22, CO)260.8 (d, 10, COR)12.8, 12.9, 14.8, 14.9(~, 18.6(~, C,H&e,), 126.0,129.3 (s, 3CH ofC,H3Me,),132.6 (s, 2CCH, of C6H,Me,)48.5 (s, CH,Ph), 127.0 (s,2CH of Ph), 128.0 (s, CH ofPh), 128.7 (s, 2CH of Ph),23.5(s,2CH2 ofC6Hll), 24.7(CH, 的 C6Hll)、33.7 (s,(s、m e ) 134.6 (s, Cipso)6, m e ) 的 C6HI 1)18.2 (s, 2CH3 的 C,H,Me,),126.1 (s, CH 的 C&,Me,),128.4 (s, 2CH 的 C6H3Me,),130.6 (s, Cipso), 132.7 (s,CCH, 的 C,H,Me,)17.6 (s, 2CH3 的 C&&e,),125.2 (S, CH 的 C,H,我,),128.0 (s, 2CH of C6H3Me2),130.2 (s, CCH, of C,H,Me,)123.2(~,2CHofPh), 132.2(s, 236.1 (d, 19, CO)Cipso), 157.5 (s, COMe)52.3 (d, 3, CH,Ph), 126.8 (s, 201.3 [d, 12, C(NR')R]2CH of Ph), 128.2 238.3 (d, 18, CO)(s, 3CH of Ph), 135.8 (s, Cipso)206.7 (d, 11, COR)234.8 (d, 17, c o )104.7, 136.1, 143.7(s,CH) 54.4(s, CH,OPh), 114.3, 202.2 [d, 12, C(NR')R]104.3, 136.1, 143.7 (s, CH)104.3, 136.0, 144.1 (s, CH) 24.7(s,2CH20fC6H11),25.1 193.7 [d, 11, C(NR')R]2CH, of C6H1 '), 57.6 (s,18.2 (s, 2CH, O f C,H,Me,),125.3 (s, CH of C,H,Me,),128.0 (s, 2CH Of C,H,Me2),129.9 (s, CCH, of C,H,Me,)17.9 (s, 2CH3 Of C ~ H ~ M ~ Z ) ,125.9 (s, CH Of C6H,Me2),129.1 (s, 2CH of C6H3Me2),13 1.2 (s, 2CCH, Of C6H,Me,)54.3 (s, CH,O), 114.6, 122.6(s, 2CH of Ph), 131.8 (s,18.4 (s, X H , of C,H,Me,),124.9 (s, CH of C,H,Me,),128.5 (s, 2CH Of C ~ H J M ~ ~ ) ,130.1 (s, 2CCH, of C6H3Me2)(s, CH2 Of C,H11), 31.4 (s, 238.6 (d, 19, CO)3CH 的 C6H11)104.6, 136.7, 144.2 (s, CH) 206.5 [d, 11, C(NR')R]238.0 (d, 17, CO)13.6, 15.7 (s, Me), 107.3 (s,CH), 145.2, 151.6 (s, m e )21 1.6 [d, 12, C(NR')R]236.5 (d, 20, CO)14.5, 13.0(s, Me), 105.8(s, CH), 143.9, 149.2 (s,m e ) Cipso), 157.0 (COMe)13.6, 16.6 (s, Me), 106.9(S, CH), 145.7, 151.7 (s,m e )205.5 [d, 8, C(NR')R]235.8 (d, 20, CO)204.8 [d, 12, C(NR')R]240.0 (d, 18, CO)溶剂 C6D6 除非另有说明。括号中的 Jcp。' 在 C、D、CD、.' 在 (CD,),CO.周期中大约有四个半衰期。两种反应表现良好,产生亚氨酰异构体是唯一可检测的产物。在两种情况下都进行了重复实验。在典型的实验中,将复合物6 inC,D(约0.08 mol dm-3)的溶液在N下转移到a5 mm NMR管中,然后冷冻和脱气。为了避免来自内部参比的干扰,在NMR管内引入了含有丙酮(约0.04mol dmP3)PPh溶液的乳管,并用作外部标准品。将管子密封并放入24“C(不确定度k 0.1”C)的aNMR探针中,其31P-(1H}NMR谱图记录在布鲁克AMX-500波谱仪上。在每个实验中,使用大约5倍于31P原子核最慢弛豫时间的aninterscan延迟进行采集。致谢我们感谢 Direccibn General de Investigacion Cientifica yTkcnica (Grant No.PB94-1436)和欧盟(Human & MobilityProgramme Proposal No.ERB4050PL920650)。我们还感谢安达卢西亚军政府授予的研究奖36W J. Chem. SOC., Dalton Trans., 1996, Pages 3687-369fellowships。还要感谢塞维利亚大学免费使用其分析和核磁共振设施。参考文献1 L. D. Durfee and I. P. Rothwell, Chem. Reu., 1988,88, 1059.2 G. Fachinetti and C. J. Floriani, J. Chem. SOC., Dalton Trans., 1977,1946;J. A. Marsella, K. G. Moloy 和 K. G. Caulton, J. Organomet.Chem., 1980, 201, 389;J. M. Manriquez, D. R. McAlister, R. D.Sanner 和 J. E. Bercaw, J. Am. Chem. SOC., 1976,98,6733;1978,100,2716;P. T. Wolczanski 和 J. E. Bercaw,王牌。化学研究, 1980,13, 121;G. Erker, Acc. Chem. Res., 1984, 17, 103 and refs.其中;F. Calderazzo, Angew.Chem., Int. Ed. Engl., 1977,89,299.3 e .Carmona, G. Wilkinson, R. D. Rogers, W. E. Hunter, M. J.Zaworotko 和 J. L. Atwood, J. Chem. SOC., Dalton Trans., 1980,229;E.Carmona, L. J. Sanchez, J. M. Marin, M. L. Poveda, J. L. Atwood, R. D. Riester 和 R. D. Rogers, J. Am. Chem. SOC., 1984,106, 3214;E.卡莫纳和L.J.桑切斯,多面体,1988 年,7,163;E. Carmona, L. Contreras, M. L. Poveda, L. J. Sanchez,J. L. Atwood and R. D. Rogers, Organometallics, 1991, 10, 61;E. Carmona, L. Contreras, M. L. Poveda and L. J. Sanchez, J. Am.Chem.SOC., 1991, 113,4322;L. Contreras, A. Monge, A. Pizzano,C. Ruiz, L. J. Sanchez 和 E. Carmona, 有机金属, 1992,11, 3971.4 C. A. Russik, T. L. Tonker 和 J. L. Templeton, J. Am. Chem. SOC.,1986, 108, 4652;A. S. Gamble, P. S. White 和 J. L. Templeton,Organometallics, 1991, 10, 693;F. R. Kriessl、W. J. Sieber、M.Wolfggruber 和 J. Riede,Angew。Chem., Int. Ed. Engl., 1994, 23,640;T. Desmond, F. J. Lalor, G. Ferguson, B. Ruhl 和 M. Parvez,J. Chem. SOC., Chem. Commun., 1983,55;H. G. Alt, J. Organomet.Chem., 1977,127,349.5 A. Pizzano, L. J. Sanchez, M. Altmann, A. Monge, C. Ruiz 和 E.Carmona, J. Am. Chem. SOC., 1995,117,1795.6 P. P. M. de Lange, H. W. Friihauf, M. J. A. Kraakman, M. wanWijnkoop, M. Kranenburg A. H. J. P. Groot and K. VreiZe,Organometallics, 1993, 12, 417;P. P. M. de Lange, M. wanWijnkoop, H. W. Friihauf 和 K. Vreize, 有机金属, 1993,12,428;P. P. M. de Lange, R. P. de Boer, M. wan Wijnkoop, J. M.Emsting, H. W. Friihauf 和 K. Vreize, 有机金属, 1993, 12,440.7 S. Trofimenko, Chem. Rev., 1993,93,943.8 A. Pizzano, L. J. Sanchez, E. GutiCrrez, A. Monge and E. Carmona,Organometallics, 1995,14, 14.9 E. Carmona, P. Palma, M. Paneque and M. L. PovedaOrganometallics, 1990,9, 583.10 M. D. Curtis, K.-B. Shiuand W. M. 巴特勒,J. Am.化学SOC., 1986,108, 1550;C. A. Rusik, M. A. Collins, A. S. Gamble, T. L. Tonkerand J. L. Templeton, J. Am. Chem. SOC., 1989,111,2550.11 P. M. Treichel, K. P. Wagner 和 R. W. Hess, Znorg.化学, 1973,12, 1471;J. Dupont 和 M. Heffer, J. Chem. SOC., Dalton Trans.,1990, 3193;E. Singleton 和 H. E. Ooasthuizen,阿杜。Organomet.Chem., 1983,22,209.收稿日期:1996年3月25日;文件6/02075EJ。Chem. SOC., Dalton Trans., 1996, 页码 3687-3691 369

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号