...
首页> 外文期刊>Biochimica et biophysica acta. Biomembranes >Implicit membrane treatment of buried charged groups: Application to peptide translocation across lipid bilayers
【24h】

Implicit membrane treatment of buried charged groups: Application to peptide translocation across lipid bilayers

机译:隐性带电荷团的隐膜处理:应用于跨脂质双层的肽转运

获取原文
获取原文并翻译 | 示例

摘要

The energetic cost of burying charged groups in the hydrophobic core of lipid bilayers has been controversial, with simulations giving higher estimates than certain experiments. Implicit membrane approaches are usually deemed too simplistic for this problem. Here we challenge this view. The free energy of transfer of amino acid side chains from water to the membrane center predicted by IMM1 is reasonably close to all-atom free energy calculations. The shape of the free energy profile, however, for the charged side chains needs to be modified to reflect the all-atom simulation findings (IMM1-LF). Membrane thinning is treated by combining simulations at different membrane widths with an estimate of membrane deformation free energy from elasticity theory. This approach is first tested on the voltage sensor and the isolated S4 helix of potassium channels. The voltage sensor is stably inserted in a transmembrane orientation for both the original and the modified model. The transmembrane orientation of the isolated S4 helix is unstable in the original model, but a stable local minimum in IMM1-LF, slightly higher in energy than the interfacial orientation. Peptide translocation is addressed by mapping the effective energy of the peptide as a function of vertical position and tilt angle, which allows identification of minimum energy pathways and transition states. The barriers computed for the S4 helix and other experimentally studied peptides are low enough for an observable rate. Thus, computational results and experimental studies on the membrane burial of peptide charged groups appear to be consistent. (C) 2014 Elsevier B.V. All rights reserved.
机译:将带电荷的基团掩埋在脂质双层的疏水核中的能源成本一直存在争议,与某些实验相比,模拟得出的估计值更高。对于该问题,通常认为内隐膜方法过于简单。在这里,我们挑战这种观点。 IMM1预测的氨基酸侧链从水到膜中心的转移自由能与全原子自由能的计算非常接近。但是,需要修改带电侧链的自由能分布图的形状,以反映所有原子的模拟结果(IMM1-LF)。通过将不同膜宽度的模拟与根据弹性理论估算的膜变形自由能结合起来,可以处理膜变薄问题。首先在电压传感器和隔离的钾通道S4螺旋上测试此方法。对于原始模型和修改后的模型,电压传感器都以跨膜方向稳定插入。分离的S4螺旋的跨膜取向在原始模型中不稳定,但在IMM1-LF中具有稳定的局部最小值,其能量略高于界面取向。通过将肽的有效能量作为垂直位置和倾斜角的函数进行映射,可以解决肽易位问题,从而可以确定最小的能量途径和过渡态。为S4螺旋和其他实验研究的肽计算的势垒足够低,可以观察到。因此,对肽带电基团的膜埋葬的计算结果和实验研究似乎是一致的。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号