...
首页> 外文期刊>Enzyme and Microbial Technology >Construction and co-expression of plasmid encoding xylitol dehydrogenase and a cofactor regeneration enzyme for the production of xylitol from D-arabitol
【24h】

Construction and co-expression of plasmid encoding xylitol dehydrogenase and a cofactor regeneration enzyme for the production of xylitol from D-arabitol

机译:木糖醇脱氢酶和辅因子再生酶质粒的构建和共表达,用于从D-阿拉伯糖生产木糖醇

获取原文
获取原文并翻译 | 示例
           

摘要

The biotransformation of D-arabitol into xylitol was investigated with focus on the conversion of d-xylulose into xylitol. This critical conversion was accomplished using Escherichia coli to co-express a xylitol dehydrogenase gene from Gluconobacter oxydans and a cofactor regeneration enzyme gene which was a glucose dehydrogenase gene from Bacillus subtitis for system 1 and an alcohol dehydrogenase gene from C. oxydans for system 2. Both systems efficiently converted D-xylulose into xylitol without the addition of expensive NADH. Approximately 26.91 g/Lxylitol was obtained from around 30g/L D-xylulose within system 1 (E. coli Rosetta/Duet-xdh-gdh), with a 92% conversion yield, somewhat higher than that of system 2 (E. coli Rosetta/Duet-xdh-adh, 24.9 g/L, 85.2%). The xylitol yields for both systems were more than 3-fold higher compared to that of the C. oxydans NH-10 cells (7.32 g/L). The total turnover number (TTN), defined as the number of moles of xylitol formed per mole of NAD~+, was 32,100 for system 1 and 17,600 for system 2. Compared with that of G. oxydans NH-10, the TTN increased by 21-fold for system 1 and 11-fold for system 2, hence, the co-expression systems greatly enhanced the NADH supply for the conversion, benefiting the practical synthesis of xylitol.
机译:研究了D-阿拉伯糖醇向木糖醇的生物转化,着重于将d-木酮糖转化为木糖醇。该关键转化是通过使用大肠杆菌共表达来自氧化葡糖杆菌的木糖醇脱氢酶基因和用于系统1的辅因子再生酶基因(其是来自枯草芽孢杆菌的葡萄糖脱氢酶基因)和用于系统2的共表达。两种系统均有效地将D-木酮糖转化为木糖醇,而无需添加昂贵的NADH。从系统1(E. coli Rosetta / Duet-xdh-gdh)中约30 g / L的D-木酮糖中获得约26.91 g /木糖醇,转化率为92%,略高于系统2(E. coli Rosetta)。 /Duet-xdh-adh,24.9 g / L,85.2%)。与C. oxydans NH-10细胞(7.32 g / L)相比,这两个系统的木糖醇产量都高出3倍以上。系统1的总周转率(TTN)定义为每摩尔NAD〜+生成的木糖醇的摩尔数,系统1的总周转率(TTN)为32,100,系统2的总周转率(TTN)为17,600。相比于羟色胺NH-10,TTN增加了系统1的21倍和系统2的11倍,因此,共表达系统极大地提高了转化所需的NADH供给,有利于木糖醇的实际合成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号