首页> 外文期刊>Environmental fluid mechanics >Dressler's theory for curved topography flows: iterative derivation, transcritical flow solutions and higher-order wave-type equations
【24h】

Dressler's theory for curved topography flows: iterative derivation, transcritical flow solutions and higher-order wave-type equations

机译:德莱勒的弯曲地形流理论:迭代推导,跨临界流解和高阶波型方程

获取原文
获取原文并翻译 | 示例
           

摘要

The Dressler equations are a system of two non-linear partial differential equations for shallow fluid flows over curved topography. The theory originated from an asymptotic stretching method formulating the equations of motion in terrain-fitted curvilinear coordinates. Apparently, these equations failed to produce a transcritical flow profile changing from sub- to supercritical flow conditions. Further, wave-like motions over a flat bottom are excluded because the bed-normal velocity component is not accounted for. However, the theory was found relevant for several environmental flow problems including density currents over mountains and valleys, seepage flow in hillslope hydrology, the development of antidunes, the formation of geological deposits from hyper-concentrated flows, and shallow-water flow modeling in hydraulics. In this work, Dressler's theory is developed in an alternative way by a systematic iteration of the stream and potential functions in terrain-fitted coordinates. The first iteration was found to be the former Dressler's theory, whereas a second iteration of the governing equations results in velocity components generalizing Dressler's theory to wave-like motion. Dressler's first-order theory produces a transcritical flow solution over topography only if the total head is fixed by a minimum value of the specific energy at the transition point. However, the theory deviates from measurements under subcritical flow conditions, given that the bed-normal velocity component is significant. A second iteration to the velocity field was used to produce a second-order differential equation that resembles the cnoidal-wave theory. It accurately produces flow over an obstacle including the critical point and the minimum specific energy as part of the numerical solution. The new cnoidal-wave model compares well with the theory of a Cosserat surface for directed fluid sheets, whereas the Saint-Venant theory appears to be poor.
机译:德莱勒方程是由两个非线性偏微分方程组成的系统,用于在弯曲地形上流动的浅层流体。该理论源于一种渐进拉伸方法,该方法在适合地形的曲线坐标系中制定了运动方程。显然,这些方程无法产生从次临界到超临界流动条件的跨临界流动曲线。另外,由于没有考虑床法向速度分量,所以排除了在平坦底部上的波浪状运动。但是,发现该理论与几个环境流动问题相关,包括山峰和山谷上的密度流,山坡水文学中的渗流,反沙丘的形成,高浓度流动形成的地质沉积以及水力学中的浅水流动模型。 。在这项工作中,Dressler的理论是通过在适应地形的坐标系中对流和潜在函数进行系统迭代而以另一种方式开发的。发现第一次迭代是以前的德勒斯勒理论,而控制方程的第二次迭代导致速度分量将德勒斯勒理论推广为波状运动。德莱瑟勒的一阶理论仅在总水头由过渡点处的比能量的最小值固定的情况下,才能在地形上产生跨临界流动解。但是,由于床法向速度分量很重要,因此该理论偏离了在亚临界流动条件下的测量结果。速度场的第二次迭代用于生成类似于正弦波理论的二阶微分方程。作为数值解的一部分,它可以精确地在包括临界点和最小比能量的障碍物上产生流量。新的正弦波模型与定向流体板的Cosserat曲面的理论非常吻合,而Saint-Venant理论似乎很差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号