...
首页> 外文期刊>Biochimica et biophysica acta. Biomembranes >Molecular genetic and biochemical approaches for defining lipid-dependent membrane protein folding
【24h】

Molecular genetic and biochemical approaches for defining lipid-dependent membrane protein folding

机译:定义脂质依赖性膜蛋白折叠的分子遗传和生化方法

获取原文
获取原文并翻译 | 示例

摘要

We provide an overview of lipid-dependent polytopic membrane protein folding and topogenesis. Lipid dependence of this process was determined by employing Escherichia coli cells in which specific lipids can be eliminated, substituted, tightly titrated or controlled temporally during membrane protein synthesis and assembly. The secondary transport protein lactose permease (LacY) was used to establish general principles underlying the molecular basis of lipid-dependent effects on protein domain folding, protein transmembrane domain (TM) orientation, and function. These principles were then extended to several other secondary transport proteins of E. coli. The methods used to follow proper conformational organization of protein domains and the topological organization of protein TMs in whole cells and membranes are described. The proper folding of an extramembrane domain of LacY that is crucial for energy dependent uphill transport function depends on specific lipids acting as non-protein molecular chaperones. Correct TM topogenesis is dependent on charge interactions between the cytoplasmic surface of membrane proteins and a proper balance of the membrane surface net charge defined by the lipid head groups. Short-range interactions between the nascent protein chain and the translocon are necessary but not sufficient for establishment of final topology. After release from the translocon short-range interactions between lipid head groups and the nascent protein chain, partitioning of protein hydrophobic domains into the membrane bilayer, and long-range interactions within the protein thermodynamically drive final membrane protein organization. Given the diversity of membrane lipid compositions throughout nature, it is tempting to speculate that during the course of evolution the physical and chemical properties of proteins and lipids have co-evolved in the context of the lipid environment of membrane systems in which both are mutually dependent on each other for functional organization of proteins.
机译:我们提供了脂质依赖的多位膜蛋白折叠和拓扑结构的概述。通过使用大肠杆菌细胞来确定该过程对脂质的依赖性,其中在膜蛋白的合成和组装过程中可以暂时清除,置换,紧密滴定或控制特定的脂质。次级转运蛋白乳糖通透酶(LacY)用于建立脂质依赖性作用于蛋白质结构域折叠,蛋白质跨膜结构域(TM)方向和功能的分子基础的一般原理。然后将这些原理扩展到大肠杆菌的其他几种次级转运蛋白。描述了在整个细胞和膜中遵循蛋白质结构域的正确构象组织和蛋白质TM拓扑结构的方法。 LacY的膜外域的正确折叠对于依赖能量的上坡运输功能至关重要,这取决于充当非蛋白质分子伴侣的特定脂质。正确的TM拓扑发生取决于膜蛋白的胞质表面之间的电荷相互作用以及由脂类头部基团定义的膜表面净电荷的适当平衡。新生蛋白质链和translocon之间的短程相互作用是必要的,但不足以建立最终的拓扑结构。从translocon释放后,脂质头基团与新生蛋白质链之间的短程相互作用,蛋白质疏水域分配到膜双层中以及蛋白质内的长距离相互作用热力学驱动最终的膜蛋白质组织。考虑到整个自然中膜脂质成分的多样性,人们很容易推测,在进化过程中,蛋白质和脂质的物理和化学性质在膜系统的脂质环境中共同发展,而膜系统的脂质环境相互依赖。在蛋白质的功能组织上相互依赖。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号