...
首页> 外文期刊>Biochimica et biophysica acta. Biomembranes >N-glycans modulate K(v)1.5 gating but have no effect on K(v)1.4 gating.
【24h】

N-glycans modulate K(v)1.5 gating but have no effect on K(v)1.4 gating.

机译:N-聚糖调节K(v)1.5门控,但对K(v)1.4门控没有影响。

获取原文
获取原文并翻译 | 示例
           

摘要

Nerve and muscle action potential repolarization are produced and modulated by the regulated expression and activity of several types of voltage-gated K(+) (K(v)) channels. Here, we show that sialylated N-glycans uniquely impact gating of a mammalian Shaker family K(v) channel isoform, K(v)1.5, but have no effect on gating of a second Shaker isoform, K(v)1.4. Each isoform contains one potential N-glycosylation site located along the S1-S2 linker; immunoblot analyses verified that K(v)1.4 and K(v)1.5 were N-glycosylated. The conductance-voltage (G-V) relationships and channel activation rates for two glycosylation-site deficient K(v)1.5 mutants, K(v)1.5(N290Q) and K(v)1.5(S292A), and for wild-type K(v)1.5 expressed under conditions of reduced sialylation, were each shifted linearly by a depolarizing approximately 18 mV compared to wild-type K(v)1.5 activation. External divalent cation screening experiments suggested that K(v)1.5 sialic acids contribute to an external surface potential that modulates K(v)1.5 activation. Channel availability was unaffected by changes in K(v)1.5 glycosylation or sialylation. The data indicate that sialic acid residues attached to N-glycans act through electrostatic mechanisms to modulate K(v)1.5 activation. The sialic acids fully account for effects of N-glycans on K(v)1.5 gating. Conversely, K(v)1.4 gating was unaffected by changes in channel sialylation or following mutagenesis to remove the N-glycosylation site. Each phenomenon is unique for K(v)1 channel isoforms, indicating that sialylated N-glycans modulate gating of homologous K(v)1 channels through isoform-specific mechanisms. Such modulation is relevant to changes in action potential repolarization that occur as ion channel expression and glycosylation are regulated.
机译:神经和肌肉动作电位复极化是由几种类型的电压门控K(+)(K(v))通道的调节表达和活性产生和调节的。在这里,我们显示唾液酸化的N聚糖会唯一影响哺乳动物Shaker家族K(v)通道同工型K(v)1.5的门控,但对第二个Shaker异构体K(v)1.4的门控没有影响。每个同工型均包含一个沿着S1-S2接头的潜在N-糖基化位点;免疫印迹分析证实K(v)1.4和K(v)1.5被N-糖基化。两个糖基化位点缺失的K(v)1.5突变体K(v)1.5(N290Q)和K(v)1.5(S292A)以及野生型K(电导率-电压(GV)关系和通道激活率与野生型K(v)1.5激活相比,在减少的唾液酸化条件下表达的v)1.5分别通过去极化约18 mV线性移动。外部二价阳离子筛选实验表明,K(v)1.5唾液酸有助于调节K(v)1.5活化的外部表面电势。通道可用性不受K(v)1.5糖基化或唾液酸化的变化的影响。数据表明,附着在N-聚糖上的唾液酸残基通过静电机制起作用,以调节K(v)1.5活化。唾液酸充分说明了N-聚糖对K(v)1.5门控的影响。相反,K(v)1.4门控不受通道唾液酸化作用的改变或诱变去除N-糖基化位点的影响。每个现象对于K(v)1通道同工型都是唯一的,表明唾液酸化的N-聚糖通过同工型特异性机制调节同源K(v)1通道的门控。这种调节与调节离子通道表达和糖基化时发生的动作电位复极化有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号