...
首页> 外文期刊>Biochimica et biophysica acta. Biomembranes >Interaction between chitosan and bovine lung extract surfactants
【24h】

Interaction between chitosan and bovine lung extract surfactants

机译:壳聚糖与牛肺提取物表面活性剂之间的相互作用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The interaction between a cationic polyelectrolyte, chitosan, and an exogenous bovine lung extract surfactant (BLES) was studied using dynamic compression/expansion cycles of dilute BLES preparations in a Constrained Sessile Drop (CSD) device equipped with an environmental chamber conditioned at 37 degrees C and 100% R.H. air. Under these conditions, dilute BLES preparations tend to produce variable and relatively high minimum surface tensions. Upon addition of "low" chitosan to BLES ratios, the minimum surface tension of BLES-chitosan preparations were consistently low (i.e. <5 mJ/m(2)), and the resulting surfactant monolayers (adsorbed at the air-water interface) were highly elastic and stable. However, the use of "high" chitosan to BLES ratios induced the collapse of the surfactant monolayer at high minimum surface tensions (i.e. > 15 mJ/m(2)). The zeta potential of the lung surfactant aggregates in the subphase suggests that chitosan binds to the anionic lipids (phosphatidyl glycerols) in BLES, and that this binding is ultimately responsible for the changes in the surface activity (elasticity and stability) of these surfactant-polyelectrolyte mixtures. Furthermore the transition from "low" to "high" chitosan to BLES ratios correlates with the flocculation and de-flocculation of surfactant aggregates in the subphase. It is proposed that the aggregation/segregation of "patches" of anionic lipids in the surfactant monolayer produced at different chitosan to BLES ratios explains the enhancing/inhibitory effects of chitosan. These observations highlight the importance of electrostatic interactions in lung surfactant systems. (c) 2007 Elsevier B.V. All rights reserved.
机译:阳离子聚电解质,壳聚糖和外源性牛肺提取物表面活性剂(BLES)之间的相互作用是在装有无水液滴(CSD)的装有条件为37°C的环境室内的装置中使用稀释BLES制剂的动态压缩/膨胀循环研究的和100%RH空气。在这些条件下,稀释的BLES制剂往往会产生可变的且相对较高的最小表面张力。加入“低”壳聚糖与BLES之比后,BLES-壳聚糖制剂的最小表面张力始终较低(即<5 mJ / m(2)),且所得表面活性剂单层(吸附在空气-水界面)为高弹性和稳定。但是,使用“高”的壳聚糖与BLES比率会导致在高的最小表面张力(即> 15 mJ / m(2))下表面活性剂单层塌陷。肺表面活性剂在亚相中聚集的Zeta电位表明,壳聚糖与BLES中的阴离子脂质(磷脂酰甘油)结合,并且这种结合最终负责这些表面活性剂-聚电解质的表面活性(弹性和稳定性)的变化。混合物。此外,从“低”到“高”的壳聚糖与BLES比率的转变与子相中表面活性剂聚集体的絮凝和去絮凝有关。提出以不同的壳聚糖与BLES比率生产的表面活性剂单层中阴离子脂质的“斑”的聚集/离解解释了壳聚糖的增强/抑制作用。这些观察结果突出了肺表面活性剂系统中静电相互作用的重要性。 (c)2007 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号