首页> 外文期刊>Biochimica et biophysica acta. Biomembranes >Roles of membrane structure and phase transition on the hyperosmotic stress survival of Geobacter sulfurreducens.
【24h】

Roles of membrane structure and phase transition on the hyperosmotic stress survival of Geobacter sulfurreducens.

机译:膜结构和相变在还原性土壤细菌高渗胁迫存活中的作用。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Geobacter sulfurreducens is a delta-proteobacterium bacteria that has biotechnological applications in bioremediation and as biofuel cells. Development of these applications requires stabilization and preservation of the bacteria in thin porous coatings on electrode surfaces and in flow-through bioreactors. During the manufacturing of these coatings the bacteria are exposed to hyperosmotic stresses due to dehydration and the presence of carbohydrates in the medium. In this study we focused on quantifying the response of G. sulfurreducens to hyperosmotic shock and slow dehydration to understand the hyperosmotic damage mechanisms and to develop the methodology to maximize the survival of the bacteria. We employed FTIR spectroscopy to determine the changes in the structure and the phase transition behavior of the cell membrane. Hyperosmotic shock resulted in greatly decreased membrane lipid order in the gel phase and a less cooperative membrane phase transition. On the other hand, slow dehydration resulted in increased membrane phase transition temperature, less cooperative membrane phase transition and a small decrease in the gel phase lipid order. Both hyperosmotic shock and slow dehydration were accompanied by a decrease in viability. However, we identified that in each case the membrane damage mechanism was different. We have also shown that the post-rehydration viability could be maximized if the lyotropic phase change of the cell membrane was eliminated during dehydration. On the other hand, lyotropic phase change during re-hydration did not affect the viability of G. sulfurreducens. This study conclusively shows that the cell membrane is the primary site of injury during hyperosmotic stress, and by detailed analysis of the membrane structure as well as its thermodynamic transitions it is indeed possible to develop methods in a rational fashion to maximize the survival of the bacteria during hyperosmotic stress.
机译:还原性土壤细菌是一种三角洲变形杆菌细菌,在生物修复和生物燃料电池中具有生物技术应用。这些应用的发展需要在电极表面和流通式生物反应器中的薄多孔涂层中稳定和保存细菌。在这些涂层的制造过程中,由于培养基中存在脱水和碳水化合物的存在,细菌会暴露于高渗胁迫下。在这项研究中,我们集中于量化还原硫短杆菌对高渗性休克和缓慢脱水的反应,以了解高渗性损害的机理并开发使细菌存活最大化的方法。我们采用FTIR光谱法确定细胞膜的结构和相变行为的变化。高渗性休克导致凝胶相中的膜脂质顺序大大降低,而膜相转变的合作性降低。另一方面,缓慢的脱水导致膜相转变温度升高,协同膜相转变较少,而凝胶相脂质序数下降较小。高渗休克和缓慢脱水都伴随着生存能力的降低。但是,我们发现在每种情况下,膜损伤的机制都是不同的。我们还表明,如果在脱水过程中消除细胞膜的溶致相变,则可使复水后的活力最大化。另一方面,再水化过程中的溶致相变不影响G.硫还原菌的生存能力。这项研究最终表明,细胞膜是高渗应激过程中损伤的主要部位,并且通过对膜结构及其热力学转变的详细分析,确实有可能以合理的方式开发方法以最大化细菌的存活率在高渗压力下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号