首页> 外文期刊>Environmental and experimental botany >Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes
【24h】

Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes

机译:盐生植物的耐盐基因可能是糖植物中耐盐的关键因素

获取原文
获取原文并翻译 | 示例
           

摘要

Crop productivity strongly depends on several biotic and abiotic factors. Salinity is one of the most important abiotic factors, besides drought, extreme temperatures, light and metal stress. The enhanced burden of secondary salinization induced through anthropogenic activities increases pressure on glycophytic crop plants. The recent isolation and characterization of salt tolerance genes encoding signaling components from halophytes, which naturally grow in high salinity, has provided tools for the development of transgenic crop plants with improved salt tolerance and economically beneficial traits. In addition understanding of the differences between glycophytes and halophytes with respect to levels of salinity tolerance is also one of the prerequisite to achieve this goal. Based on the recent developments in mechanisms of salt tolerance in halophytes, we will explore the potential of introducing salt tolerance by choosing the available genes from both dicotyledonous and monocotyledonous halophytes, including the salt overly sensitive system (SOS)-related cation/proton antiporters of plasma (NHX/SOS1) and vacuolar membranes (NHX), energy -related pumps, such as plasma membrane and vacuolar H+ adenosine triphosphatase (PM & V-H(+)ATPase), vacuolar pyrophosphatases (V-H(+)PPase) and potassium transporter genes. Various halophyte genes responsible for other processes, such as crosstalk signaling, osmotic solutes production and reactive oxygen species (ROS) suppression, which also enhance salt tolerance will be described. In addition, the transgenic overexpression of halophytic genes in crops (rice, peanut, finger millet, soybean, tomato, alfalfa, jatropha, etc.) will be discussed as a successful mechanism for the induction of salt tolerance. Moreover, the advances in genetic engineering technology for the production of genetically modified crops to achieve the improved salinity tolerance under field conditions will also be discussed. (C) 2015 Elsevier B.V. All rights reserved.
机译:作物生产力在很大程度上取决于几种生物和非生物因素。除干旱,极端温度,光照和金属胁迫外,盐度是最重要的非生物因素之一。通过人为活动引起的次级盐碱化负担的增加,增加了对糖生作物的压力。最近从盐生植物中编码信号成分的耐盐基因的分离和鉴定,其自然生长于高盐度中,为开发具有改善的耐盐性和经济效益的转基因作物提供了工具。此外,了解盐生植物与盐生植物之间在耐盐性方面的差异也是实现该目标的前提之一。基于盐生植物耐盐机理的最新进展,我们将通过从双子叶和单子叶植物中选择可用的基因(包括盐超敏感系统(SOS)相关的阳离子/质子反转运蛋白)来探索引入耐盐性的潜力。血浆(NHX / SOS1)和液泡膜(NHX),与能量有关的泵,例如液膜和液泡H +腺苷三磷酸酶(PM&VH(+)ATPase),液泡焦磷酸酶(VH(+)PPase)和钾转运蛋白基因。将描述负责其他过程的各种盐生植物基因,例如串扰信号传导,渗透性溶质产生和活性氧(ROS)抑制,它们也增强了耐盐性。此外,将讨论作物(水稻,花生,小米,大豆,番茄,苜蓿,麻风树等)中盐生植物基因的转基因过表达,作为诱导耐盐性的成功机制。此外,还将讨论用于生产转基因作物以提高田间条件下耐盐性的基因工程技术的进展。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号