...
首页> 外文期刊>Biochimica et biophysica acta. Biomembranes >Correlating lipid bilayer fluidity with sensitivity and resolution of polytopic membrane protein spectra by solid-state NMR spectroscopy
【24h】

Correlating lipid bilayer fluidity with sensitivity and resolution of polytopic membrane protein spectra by solid-state NMR spectroscopy

机译:固态NMR光谱法将脂质双层流动性与多酚膜蛋白光谱的灵敏度和分辨率相关

获取原文
获取原文并翻译 | 示例

摘要

Solid-state NMR spectroscopy has emerged as an excellent tool to study the structure and dynamics of membrane. proteins under native-like conditions in lipid bilayers. One of the key considerations in experimental design is the uniaxial rotational diffusion of the protein that can affect the NMR spectral observables. In this regard, temperature plays a fundamental role in modulating the phase properties of the lipids, which directly influences the rotational diffusion rate of the protein in the bilayer. In fact, it is well established that below the main phase transition temperature of the lipid bilayer the protein's motion is significantly slowed while above this critical temperature the rate is increased. In this article, we carried out a systematic comparison of the signal intensity and spectral resolution as a function of temperature using magic-angle-spinning (MAS) solid-state NMR spectroscopy. These observables were directly correlated with the relative fluidity of the lipid bilayer as inferred from differential scanning calorimetry (DSC). We applied our hybrid biophysical approach to two polytopic membrane proteins from the small multidrug resistance family (EmrE and SugE) reconstituted into model membrane lipid bilayers (DMPC-14:0 and DPPC-16:0). From these experiments, we conclude that the rotational diffusion giving optimal spectral resolution occurs at a bilayer fluidity of similar to 5%, which corresponds to the percentage of lipids in the fluid or liquid-crystalline fraction. At the temperature corresponding to this critical value of fluidity, there is sufficient mobility to reduce inhomogeneous line broadening that occurs at lower temperatures. A greater extent of fluidity leads to faster uniaxial rotational diffusion and a sigmoidal-type reduction in the NMR signal intensity, which stems from intermediate-exchange dynamics where the motion has a similar frequency as the NMR observables (i.e., dipolar couplings and chemical shift anisotropy). These experiments provide insight into the optimal temperature range and corresponding bilayer fluidity to study membrane proteins by solid-state NMR spectroscopy. This article is part of a Special Issue entitled, NMR Spectroscopy for Atomistic Views of Biomembranes and Cell Surfaces. Guest Editors: Lynette Cegelski and David P. Weliky. (C) 2014 Elsevier B.V. All rights reserved.
机译:固态NMR光谱学已经成为研究膜的结构和动力学的优秀工具。脂质双层中类似天然条件的蛋白质。实验设计中的关键考虑因素之一是蛋白质的单轴旋转扩散,这可能会影响NMR光谱观测值。在这方面,温度在调节脂质的相性质中起着基本作用,其直接影响双层中蛋白质的旋转扩散速率。实际上,已经公认的是,在脂质双层的主相变温度以下,蛋白质的运动明显减慢,而在该临界温度以上,速率增加。在本文中,我们使用魔术角旋转(MAS)固态NMR光谱系统地比较了信号强度和光谱分辨率随温度的变化。从差示扫描量热法(DSC)推断,这些可观察物与脂质双层的相对流动性直接相关。我们将我们的混合生物物理方法应用于重构为模型膜脂质双层(DMPC-14:0和DPPC-16:0)的小型多药耐药家族(EmrE和SugE)的两种多聚膜蛋白。从这些实验中,我们得出的结论是,给出最佳光谱分辨率的旋转扩散发生在双层流动性接近5%的情况下,这相当于液体或液晶部分中脂质的百分比。在与该流动性的临界值相对应的温度下,有足够的迁移率以减少在较低温度下发生的不均匀管线加宽。更大程度的流动性导致更快的单轴旋转扩散和NMR信号强度的S形降低,这是由于中间交换动力学导致的,其运动的频率与NMR可观察到的频率相似(即,偶极耦合和化学位移各向异性) )。这些实验提供了最佳温度范围和相应的双层流动性的见解,以通过固态NMR光谱研究膜蛋白。本文是名为“ NMR光谱用于生物膜和细胞表面原子视图”的特刊的一部分。客座编辑:Lynette Cegelski和David P. Weliky。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号