首页> 外文期刊>dalton transactions >Interconversion of boron hydrides. Part 2. Cothermolysis of tetraborane(10), B4H10, with other boranes at 75 °C
【24h】

Interconversion of boron hydrides. Part 2. Cothermolysis of tetraborane(10), B4H10, with other boranes at 75 °C

机译:硼氢化物的相互转化。第 2 部分。四硼烷(10),B4H10与其他硼烷在75°C的共热解

获取原文

摘要

1398 J.C.S. Daltonlnterconversion of Boron Hydrides.borane(lO), B4H10, with Other BoranesBy Terence C. Gibb, Norman N. Greenwood,. TrevorPart 2.l Cothermolysis of Tetra-at 75 "CR. Spalding, and Derek Tavlorson, Department oftnorganic and Structural Chemistry, The University of Leeds, Leeds-LS2 9JTA mass spectrometric method of analysis has been used to study the cothermolysis of B4H,o with B2H6, B,H,,BaHll, B6Hlo, and B6H12 at 75 "C. The reactions are complicated. The variations with time of the concentrationsof the major products are compared with results obtained from the thermolysis of each borane singly to elicitinformation about the role of B4H10 and possible reactive species formed from B4H1, in the cothermolysis. A seriesof reactions are suggested which invoke (B4H,) as a reactive species of major importance from B4H10.WE have recently developed a mass spectrometricmethod for the continuous quantitative analysis ofborane rnixtures.l As part of a general study of gas-phase interconversions of boranes we report here the useof the method in an initial, non-kinetic, investigation ofcothermolyses of B4H10 with B2H6, B5H9, B,H,,, B6H10,and B12.By comparing the time variation of theconcentrations of species during the cothermolysis withthe results from the thermolysis of individual boranes,it has been possible to form some conclusions about therole played in interconversion reactions by B4H1o andreactive species produced therefrom.Evidence from both mass-spectrornetrically analysedtherrnolysis studies 2-4 and chemical reactions has ledto the proposal of three highly reactive species in B4H10chemistry reactions (1) and (Z).Such species areB4H10 {B4H8) + H2 (1)B4H10 c- {B3H7} + (BH3) (2)involved in most suggested mechanisms of borane inter-conversions, e.g. B,H, thermolysis6 The importance ofreaction (1) is worth noting since similar reactions are nolonger regarded as significant for B5H11 or B6H12,although there is evidence for loss of H2 from BgH15,' andloss of H, from {B3H9) has often been conjectured.sThe removal of a {BH,} group by reactions related to (2)has been reported for B5H118a and B9H15, 86 and suggestedfor {B3H9) and B6H12.' Stafford, has proposed thatreaction (1) proceeds faster than (2) on the basis of hiswork on B4H10 thermolysis.However, only at tem-peratures above 180 "C was evidence of {B4H8} obtainedand small quantities of (BH,} or (B3H7) compared to{B4H8) could not be excluded.2EXPERIMENTALThe preparation of boranes and the method of analysis ofthe mass spectra of mixtures have been discussed in Part 1.1For each cothermolysis reaction the reactants and argonwere metered into a known volume and allowed to mix atroom temperature for several minutes. The mixture wasexpanded into the reaction vessel which was then isolated.The spectrum of the mixture was recorded as previouslydescribed and the initial partial pressures of boranes(usually of the order of 3 mmHg) t and argon were calcu-lated.1 The reaction vessel was heated from room tem-perature to 76 "C in 3 min.The zero reaction time wastaken 2 min after the start of heating. Spectra wererecorded at set time intervals up to 120 min. At the endof each reaction high-resolution measurements were made t ocheck the proportions of B,H, and B,Hll, and B,Hl, andB,H,,, in the pentaborane and hexaborane regions of thespectra.' As with the previous work, no quantitativeanalyses of H, or solid polymeric boranes were attempted.RESULTS AND DISCUSSIONCothermolysis of B2H6 and B4HIo at 75 "C.-The re-activity of both and B,H, was increased in thecothermolysis compared to the thermolysis of eachsingly, the effect being more noticeable for B$6, asshown in the Figure deposited in SupplementaryPublication No.SUP 22542 (4 pp.).$ In the cothermo-lysis after 120 min at 75 "C the concentration of B,H,was reduced by almost 30 from its original value (3.3mmHg) compared to a reduction of ~ 8 after the sametime in the thermolysis of at 100 "C.l Further, itshould be noted that B2H6 is itself produced on thermo-lysing B4HIo at 75 "C to an extent of ca. 10 of theinitial concentration of B4H1, in 120 min.l In thecothermolysis the initial B4H1, concentration (3.3 mmHg)decreased by ca. 93 compared to a decrease of 86 intherrnolysis of B4H10 alone.Be-tween 60 and 120 min after the reaction had started theconcentration of B5H11 was about three times that foundin the thermolysis of B4H1, alone, where again B11was the most abundant product. Other, comparativelyminor, products were hexaboranes (B,Hlo and B6H12 ina ratio of 2 : 3 from high-resolution measurements) andBioH14.These appeared a t lower rates and in lessabundance than from the thermolysis of B4H10 singly.The reaction (3) between B2H6 and B4H10 to produceBy far the most abundant product was B,H,,.2B4H10 + B2H6 * 2B,H11 + 2H2 (3)B5H11 and H2 has long been suggested to be an equili-brium.9 A study of the kinetics of the forward reactionbetween 72.5 and 92.9 "C was interpreted as showingB2H6 + (B4H8) - B5H11 + (BH3} (*)that the loss of H2 from B4H10 was the rate-determiningstep (1) followed by reaction (4) to give B5Hll and+ Throughout this paper: 1 mmHg = 13.6 x 9.8 Pa.For details see Notices to Authors No. 7, J.C.S.Dalton, 1978,Index issue1979 1399{ BH,) .lo Earlier workers had suggested that B4H10decomposed by two simultaneous first-order paths to(B4H8) and {B3H7} species, the route to the latter beingthe rate-controlling step.ll The arguments in favour of(1) and (4) as the major reactions giving B5H11 comparedto a route via {B3H7) formed directly from B4H10 includeevidence that {B3H7} and B2H6 react rapidly to giveB,H1o,lO* l2 and mass spectrometric confirmation of(B4Hs> but not (B3H7> or {BH,) as species in the thermo-lysis of B4H10.2'4'8a Convincing as this may seem, wecannot completely rule out other, probably less im-portant, routes to B5H11 by reactions of R,Hlo with{BH,}, {B3H7}, or even {B4H8), reaction (5). Under our{B4H8> + B4H10 - B5H11 $- {B3H7) (5)conditions it seems unlikely that reactions of B2H6 alonewould be important sources of {BH,} and {B,H7).lIt is possible that the BeH10 observed originates byreaction (6), and B,H12 by reaction (7).If reactions2{B4H8) - B2H6 + B6H10 (6){B4H8) + B2H6--tB6H12 + H2 (7)such as (4), and less importantly (7), were significantthen it would be expected that the concentration ofBaH10 would be lower than from a thermolysis of B4H10alone since B2H6 is competing for (B,H,). If this wereso then the concentration of B1oH14 would also be lower(as observed) since B6H10 is generally thought to be anintermediate along with BOH15 and BsH12 in the form-ation of B10H14.6 A lack of (B3H7) would also act toinhibit production of B1oH14.Cothermolysis of B5H, and B4H10 at 75 "C.-As far asthe formation of products is concerned this reaction isvery similar to the thermolysis of B,Hl0 alone, B5H,being unreactive when thermolysed at 75 "C.l A Figuredeposited in SUP 22542 shows the variation of productconcentration with time.The major product is B5H11with B2H6, BloH14, and hexaboranes (B6HlO andin the ratio 2 : 3) also present. A slight reduction inB5H, concentration was observed with small increasesin the concentrations of and BloHl, after 120 rnincompared to the thermolysis of B4H10 alone. Reactionssuch as (8) and (9), followed by conversion of B6H10 intoB10H14, may account for these findings.{B4H8> + Bi5H9-(B3H7) + B6H10 (8){B3H7} + B5H9 - B2H6 $- B6H10 (9)The reaction of {BH,) and B5H, at ca.450 "C has beenreported to produce a hexaborane but the hydrogencontent was not asce13ained.l~Attempted Cothermolysis of B5H11 and B4H10 at 75 "C.-The method used for the preparation of B6H12 resultedin the isolation of a small amount of B5H11 contaminatedwith B6H12 (ca. 20 of the B5H11 concentration). TheB5H11 so obtained could not be further purified and wasused in the cothermolysis with B4H10; the results of thispreliminary study (Figure 1) may therefore be lessreliable than those of the other cothermolyses reportedhere, although it was established that the concentrationof B6H10 was zero at the start of the reaction.With the thermolysis of B4H10 itself producing B5H11,the concentration of B5H11 increased during the first 45min and thereafter decreased.This is in accord withthe previous observations that B4H10 is more reactivethan B5H11 and that B5H11 is the major product from thethermolysis of B4Hio.l Of the other products, bothB2H6 and B1oH14 were formed in larger amounts after120 min than would have been expected from equivalentamounts of B4H10, B5H11, and B6H12 thermolysedseparately. This can be attributed to the increasedimportance of reaction (6) with an increased concen-tration of {B4H8) being, supplied via reaction (10).B5H11 (B4H8} + {BH3) (10)The BeHl,) would be subsequently converted intoB1oH14. The concentration of hexaboranes increasesOIIEEQ1.0050 100t / minFIGURE 1 Cothermolysis of B,H,, and B 5 H 1 1 at 75 "C.Bor-B4Hlo B5H11 (0)J B6H10-B6H18 (a), B,H6B10H14 (A)? B8H12 (a), BSH15 (0)during the first 45 rnin of reaction and then decreases.After 120 min the ratio ofCothermolysis of B6H10 and B4H10 at 75 "C.-WithB4H10 present the initial concentration of BaHlo wasreduced by 86 in 120 min. Thermolysis of B6H10alone showed a reduction of ca. 9 in 120 min.l Thecothermolysis (Figure 2) produced B5H11, B2H6, andB1oH14 as major products and a small amount of B,H,after 120 min. Substantial concentrations of B,H12 andBgH15 built up over the first 30-40 min and then de-creased. At the end of the reaction time the ratio ofB6H;O to B6H12 present was 3 : 1. The increased pro-portions of B,H6, B8H12, BgH15, and B10H14 observed canbe explained simply by reactions (11)-(13), or by moreto B6H12 is ca.1 : 1.(B4H8) + B6H10 - B9H15 + (BH3)B9H15 * B8H12 + (BH3)B8H12 + {B4H8> - B10H14 + B2H6(11)(12)(13)complicated routes, e.g. those involving { B,H,,) and{B3H7} as proposed by Long in the thermolysis ofB2H,. There is good evidence for reactions (11) l4and (12),8b but (13) has not been studied separately1400 J.C.S. DaltonAs well as in (13), B2H6 would be produced via reaction(6). The observation of relatively small amounts ofB6H12 and B,H, (ca. 10 of pentaboranes at t = 120min) can be explained in terms of reaction (7) givingB6H12 which then either decomposes by (14) or reactswith (B4H8), reaction (15).B6H12 --b BSHB + iBH3){B4H8> + B6H12 - B6HB + B5H11(14)(15)Cothermol'ysas of B,H,, and B4H10 at 75 "C (Figure 3).-The rate of decomposition of B6H12 in cothermolysiswith B4HIo appeared to be slower than B6H12 alone.This was due to the formation of B6H10 from BgH10,lproducing a mixture of B6H12 and BBH10.After 120min the ratio of BO. to B6H12 was 1 : 3.Greater concentrations of B2H6 and Bl,Hl, wereobserved after 120 min than would have been expectedfrom separate thermolyses of B4H1, and BaH12. Amixture of pentaboranes B5H, and BSH1, in the ratio2 : 3 was found after 120 min. To understand theseobservations one can postulate that the important re-actions in the cothermolysis are (14) and (15) givingB5H, and B5H11, (10) and (1) giving {B,H,), (6) givingB6H10, and (11)-( 13) producing B1oH14. Reaction (8)could play a part in B6H1, formation and other reactionsinvolving (B3H,) may occur to some extent.In conclusion, we have shown that the recentlydeveloped method of analysis of mixtures of boranesbased on mass spectrometry provides consistent resultson the cothermolysis of boranes, which can be inter-preted in a self-consistent manner.Comparison of these0550 1000t / m i nFIGURE 2 Cothermolysis of B,Hlo. and B,Hlo ( x ) at 75 "C.Boranes as in Figure 1Q 2.01.0050 100t / minCothcrinolysis of B,€Ilo. and B,Hl, ( x ) a t 75 "C. FIGURE 3Roranes as in Figure 1results with data from the thermolysis of individualboranes is a very useful approach to the complexproblem of understanding the thermolytic intercon-version reactions of boranes.In particular, it nowappears that (B4H,) is a reactive intermediate ofmajor importance in reactions of B4Hlo with B2H6,B5H,, B5H11, B,Hlo, and B,H12, and that B6Hlo is themost important stable borane precursor for the efficientproduction of BloHl, under the experimental conditionsused.We thank the S.R.C. for support, the University of Leedsfor the award of a Lowsoii Scholarship (to D. T.), and Mr.D. Singh for his help in obtaining the mass spectra.8/1838 Received, 19th October, 19781REFERENCESTaylorson, preceding paper.Stafford, J . Amer. Chem. Soc., 1966, 88, 929.Phys., 1970, 53, 782.Academic Press, New York, 1975.l Part 1, T. C. Gibb, N. N. Greenwood, T. R. Spalding, and D.A. €3. Baylis, G. A. Pressley, M. E. Gordon, and F. E.F. E. Stafford, Bull. SOC. chim. belges, 1972, 81, 81.P. S. Ganguli, L. P. Gordon, and H. A. McGee, J . Chem.E. L. Muetterties (ed.), ' Boron Hydride Chemistry,'L. H. Long, Pvogr. Inovg. Chem., 1972, 15, 1.L. C. Ardini and T. P. Fehlner, Inovg. Chem., 1973, 12, 798,and refs. therein.( a ) R. E. Hollins and F. E. Stafford, Inovg. Chem., 1970, 0,577; (b) J. F. Ditter, J. R. Spielmann, and R. E. Williams, Inorg.Chem., 1966, 5, 118.A. B. Burg and H. I. Schlesinger, J . Amev. Chem. SOC., 1933,55, 4009.lo J. A. Dupont and K. Schaeffer, J . Inovg. Nuclear Chem.,1960, 15, 310.l1 R. K. Pearson and L. J . Edwards, Abs. 132nd NationalMeeting of the Anaerican Chemical Society, New York, September1957, p. 15N.l2 R. Schaeffer, J . Inorg. Nuclear Chem., 1960, 15, 190.l3 T. P. Fehlner and S. -4. Fridmann, Inovg. Chem., 1972, 11,J. Rathke and R. Schaeffer, Inovg. Chem., 1974, 18, 3008.936
机译:1398 J.C.S. Daltonlnterconversion of Boron Hydrides.borane(lO), B4H10, with Other Boranes作者:Terence C. Gibb, Norman N. Greenwood,.TrevorPart 2.l Tetra-at 75 “CR. Spalding 和 Derek Tavlorson,利兹大学有机与结构化学系,利兹-LS2 9JTA 质谱分析方法已用于研究 B4H,o 与 B2H6、B,H、BaHll、B6Hlo 和 B6H12 在 75 ”C 下的共热解。反应很复杂。将主要产物浓度随时间的变化与每种硼烷单独热解获得的结果进行比较,以引出有关B4H10和B4H1形成的可能反应物质在热解中的作用的信息。提出了一系列反应,这些反应将 (B4H,) 作为 B4H10 中具有重要意义的反应性物质。我们最近开发了一种用于硼烷 rnixtures 连续定量分析的质谱法.l 作为硼烷气相互转化的一般研究的一部分,我们在这里报告了该方法在 B4H10 与 B2H6、B5H9、B,H,,,B6H10 和 B&12 的热解的初始非动力学研究中的使用。已经有可能形成一些关于B4H1o和反应性物质在相互转化反应中的作用的结论。质谱分析热分解研究 2-4 和化学反应的证据导致提出了 B4H10 化学中的三种高反应性物质 [反应 (1) 和 (Z)]。这些物种是B4H10 {B4H8) + H2 (1)B4H10 c- {B3H7} + (BH3) (2)参与大多数建议的硼烷相互转化机制,例如B,H,热解6反应(1)的重要性值得注意,因为类似的反应不再被认为对B5H11或B6H12具有重要意义,尽管有证据表明H2从BgH15中丢失,而H从{B3H9)中丢失,经常被推测。} 组 与 (2) 相关的反应组已报道为 B5H118a 和 B9H15, 86,并建议用于 {B3H9) 和 B6H12。斯塔福德提出,反应 (1) 比 (2) 进行得更快,基于他对 B4H10 热解的研究。然而,只有在温度高于180“C时,才获得了{B4H8}的证据,并且不能排除与{B4H8)相比的少量(BH,}或(B3H7).2实验硼烷的制备和混合物质谱的分析方法已在第1.1部分中讨论过对于每个热解反应,反应物和氩被计量到已知体积,并允许在室温下混合几分钟。将混合物膨胀到反应容器中,然后分离。如前所述记录混合物的光谱,并计算硼烷(通常为3mmHg量级)t和氩气的初始分压.1反应容器在3分钟内从室温加热到76“C。零反应时间在加热开始后 2 分钟进行。光谱以设定的时间间隔记录,最长可达 120 分钟。在每次反应结束时,进行高分辨率测量,以检查光谱中五硼烷和六硼烷区域中B,H和B,Hll以及B,Hl和B,H,,,的比例。与之前的工作一样,没有尝试对氢或固体聚合物硼烷进行定量分析。结果和讨论B2H6 和 B4HIo 在 75 “C.-与热解相比,B2H6 和 B4HIo 在热解中的再活性都有所增加,B$6 的效果更为明显,如补充出版物编号 SUP 22542(4 页)中存放的图所示。$ 在 75 “C 下 120 分钟后的共热裂解中,B,H 的浓度比其原始值 (3.3mmHg) 降低了近 30%,而在 100 ”C.l 的热解中同时降低了 ~ 8 % 此外,应该注意的是,B2H6 本身是在 75 “C 下热裂解 B4HIo 时产生的,其程度约为 B4H1 初始浓度的 10%, 在120分钟中,在热解中,初始B4H1的浓度(3.3mmHg)降低了约93%,而单独的B4H10的热分解降低了86%。在反应开始后 60 分钟和 120 分钟,B5H11 的浓度约为单独热解 B4H1 的三倍,其中 B&11 又是最丰富的产物。其他相对次要的产物是六硼烷(B,Hlo和B6H12的比例为2:3,从高分辨率测量)和BioH14.这些产物的速率和丰度似乎比单独B4H10的热解低。B2H6 和 B4H10 之间的反应 (3) 产生迄今为止最丰富的产物是 B,H,,.2B4H10 + B2H6 * 2B,H11 + 2H2 (3)B5H11 和 H2 长期以来一直被认为是平衡的.9 对 72.5 和 92.9 之间正向反应动力学的研究“C 被解释为显示 B2H6 + (B4H8) - B5H11 + (BH3} (*) B2 从 B4H10 中损失 H2 是速率决定步骤 (1) 然后是反应 (4) 给出 B5Hll 和 + 在整个过程中论文:1 mmHg = 13.6 x 9.8 Pa.有关详细信息,请参阅 Notices to Authors No. 7, J.C.S.Dalton, 1978,Index issue1979 1399{ BH,) .lo 早期的研究人员认为 B4H10 由两条同时通向 (B4H8) 和 {B3H7} 物种的一阶路径分解,通向后者的途径是速率控制步骤.ll 支持(1)和(4)作为主要反应的论据,使 B5H11 与直接由 B4H10 形成的通过 {B3H7) 的路线进行比较,包括证明 {B3H7} 和B2H6 对 B4H10 热裂解中的物质 (B4Hs> 的 B,H1o,lO* l2 和质谱确认 (B4H7> 或 {BH,) 反应迅速。2'4'8a 尽管这看起来很有说服力,但我们不能完全排除通过R,Hlo与{BH,}、{B3H7}甚至{B4H8)反应(5)反应到达B5H11的其他可能不太重要的途径。在我们的{B4H8> + B4H10 - B5H11 $- {B3H7) (5)条件下,B2H6 单独反应似乎不太可能是 {BH,} 和 {B,H7) 的重要来源。如果反应 2{B4H8) - B2H6 + B6H10 (6){B4H8) + B2H6--tB6H12 + H2 (7) 例如 (4),并且不太重要的 (7),那么预计 BaH10 的浓度将低于单独热解 B4H10,因为 B2H6 正在竞争 (B,H,)。如果是这样,那么 B1oH14 的浓度也会更低(如所观察到的),因为 B6H10 通常被认为与 BOH15 和 BsH12 一起形成 B10H14.6 缺乏 (B3H7) 也会抑制 B1oH14 的产生.B5H 和 B4H10 在 75 “C.-就产物的形成而言,该反应与 B 的热解非常相似,单独 Hl0,B5H,在 75 “C.l A 下热解时不反应 SUP 22542 中沉积的图显示了产物浓度随时间的变化。主要产物是B5H11,B2H6,BloH14和己硼烷(B6HlO和比例为2:3)。B5H略有降低,与单独热解B4H10相比,120 rnin后,观察到BloHl浓度略有增加。反应如(8)和(9),随后将B6H10转化为B10H14,可以解释这些发现。{B4H8> + Bi5H9-(B3H7) + B6H10 (8){B3H7} + B5H9 - B2H6 $- B6H10 (9){BH,) 和 B5H 的反应,在 ca.450 “据报道,C 产生六硼烷,但氢含量未达到 asce13ained.l~B5H11 和 B4H10 在 75 时尝试共热解”C.-用于制备 B6H12 的方法导致分离出少量被 B6H12 污染的 B5H11(约 B5H11 浓度的 20%)。所得的B5H11不能进一步纯化,用于与B4H10的共热解;因此,这项初步研究的结果(图1)可能不如这里报道的其他热解的结果可靠,尽管已经确定B6H10的浓度在反应开始时为零。随着B4H10本身的热解生成B5H11,B5H11的浓度在前45min内升高,此后降低。这与先前的观察结果一致,即 B4H10 比 B5H11 更具反应性,并且 B5H11 是 B4Hio.l 热解的主要产物 在其他产物中,B2H6 和 B1oH14 在 120 分钟后形成的量都大于分别热解的 B4H10、B5H11 和 B6H12 的预期量。这可以归因于反应 (6) 的重要性增加,通过反应 (10) 提供 {B4H8) 的浓度增加。B5H11 (B4H8} + {BH3) (10)BeHl,) 随后会转化为 B1oH14。己硼烷浓度增加OIIEEQ1.0050 100t / min图1 B,H,和B 5 H 1 1在75“C.Bor-B4Hlo B5H11 (0)J B6H10-B6H18 (a), B,H6B10H14 (A)?B8H12 (a), BSH15 (0)在反应的前45 rnin期间,然后减少。120 min后,B6H10和B4H10在75“C.-WithB4H10的热解比值在120 min内降低了86%。B6H10单独热解显示,在120 min中,热解(图2)产生B5H11、B2H6和B1oH14作为主要产物,120分钟后产生少量B,H。在前 30-40 分钟内,大量浓度的 B,H12 和 BgH15 积聚,然后去皱。在反应时间结束时,B6H的比例;O至B6H12的发生率为3:1。观察到的 B、H6、B8H12、BgH15 和 B10H14 的增加部分可以简单地用反应 (11)-(13) 来解释,或者用 B6H12 来解释 ca.1 : 1.(B4H8) + B6H10 - B9H15 + (BH3)B9H15 * B8H12 + (BH3)B8H12 + {B4H8> - B10H14 + B2H6(11)(12)(13)复杂的路线,例如涉及 { B,H,,) 和 {B3H7} 的途径,如 Long 在 B2H 的热解中提出的,.反应(11)l4和(12),8b有很好的证据,但(13)尚未单独研究1400 J.C.S.道尔顿与(13)一样,B2H6 将通过反应(6)产生。观察到相对少量的 B6H12 和 B,H(在 t = 120 分钟时约 10% 的五硼烷)可以用反应 (7) 给出 B6H12 来解释,然后被 (14) 分解或与 (B4H8) 反应,反应 (15)。B6H12 --b BSHB + iBH3){B4H8> + B6H12 - B6HB + B5H11(14)(15)B,H,和B4H10在75“C下的共温反应(图3).-B6H12在与B4HIo的共热分解中的分解速率似乎比单独的B6H12慢。这是由于 BgH10 形成 B6H10,产生 B6H12 和 BBH10 的混合物。120 min后,B&O.与B6H12的比值为1:3.120 min后观察到的B2H6和Bl,Hl浓度高于B4H1和BaH12单独热解的预期浓度。120 分钟后发现五硼烷 B5H 和 BSH1 的混合物,比例为 2:3。为了理解这些观察结果,可以假设热解中的重要再反应是 (14) 和 (15) 产生 B5H,以及 B5H11,(10) 和 (1) 产生 {B,H,),(6) 产生 B6H10,和 (11)-( 13) 产生 B1oH14。反应(8)可能在B6H1中起作用,形成和其他反应涉及(B3H,)可能在一定程度上发生。总之,我们已经表明,最近开发的基于质谱法的硼烷混合物分析方法在硼烷的热解上提供了一致的结果,可以以自洽的方式相互伪造。这些的比较0550 1000t / m i n图2 B,Hlo的热解。和 B,Hlo ( x ) 在 75 “C.硼烷,如图 1Q 2.01.0050 100t / minCothcrinolysis of B,€Ilo.和 B,Hl, ( x ) a t 75 “C. 图 3 如图 1 所示,使用来自单个硼烷热解的数据是解决硼烷热解间反应的复杂问题的非常有用的方法。特别是,现在看来(B4H,)是B4Hlo与B2H6,B5H,,B5H11,B,Hlo和B,H12反应中非常重要的反应性中间体,并且B6Hlo是实验条件下高效生产BloHl的最重要稳定硼烷前体。我们感谢 S.R.C. 的支持,感谢利兹大学授予 Lowsoii 奖学金(授予 D.T.),感谢 D. Singh 先生在获得质谱图方面的帮助。[8/1838 收稿日期:19781 年 10 月 19 日参考文献泰勒森,前一篇论文。斯塔福德,J .Amer. Chem. Soc., 1966, 88, 929.Phys., 1970, 53, 782.Academic Press, New York, 1975.l Part 1, T. C. Gibb, N. N. Greenwood, T. R. Spalding, and D.A. €3.Baylis、GA Pressley、ME Gordon 和 F. E.F. E. Stafford,公牛。SOC. chim.Belges, 1972, 81, 81.P. S. Ganguli, L. P. Gordon, and H. A. McGee, J .Chem.E. L. Muetterties (ed.), ' 硼氢化物化学,'L. H. Long, Pvogr.伊诺夫。Chem., 1972, 15, 1.L. C. Ardini 和 T. P. Fehlner, Inovg.Chem., 1973, 12, 798,and refs.其中。( a ) R. E. Hollins 和 F. E. Stafford, Inovg.化学, 1970, 0,577;(b) J.F.Ditter, J. R. Spielmann, and R. E. Williams, Inorg.Chem., 1966, 5, 118.A. B. Burg 和 H. I. Schlesinger, J .阿梅夫。Chem. SOC., 1933,55, 4009.lo J. A. Dupont 和 K. Schaeffer, J .伊诺夫。核化学,1960, 15, 310.l1 R. K. Pearson and L. J .Edwards, Abs. 132nd NationalMeeting of the Anaerican Chemical Society, New York, September1957, p. 15N.l2 R. Schaeffer, J .伊诺格。核化学, 1960, 15, 190.l3 T. P. Fehlner and S. -4.弗里德曼,伊诺夫。Chem., 1972, 11,J. Rathke and R. Schaeffer, Inovg.化学, 1974, 18, 3008.936

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号