...
首页> 外文期刊>BioTechniques >Management of inadvertent template contamination in production of oligonucleotide qPCR reagents
【24h】

Management of inadvertent template contamination in production of oligonucleotide qPCR reagents

机译:寡核苷酸qPCR试剂生产过程中无意模板污染的管理

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The quantitative polymerase chain reaction, qPCR, is an important routine tool for diagnosis of microbial infections 1. This assay employs forward and reverse oligonucleotide primers for exponential amplification of pathogen-specific nucleic acids by thermostable DNA polymerases. Amplification of target sequences can be detected in each cycle by fluorescence produced by double stranded DNA-specific fluorescent dyes, or release of fluorescent dyes coupled to quenched oligonucleotide pathogen-specific probes 2. Double stranded DNA-specific dyes (e.g., SYBR, EVA Green) provide a sensitive and inexpensive option for monitoring amplification of specific sequences but are usually limited to detection of a single target sequence per reaction. In contrast, fluorescently labeled ‘TaqMan®’ oligonucleotide probes allow for ‘multiplexing’, enabling the detection of multiple specific sequences from samples in a single reaction 3. This capability is particularly important for clinical diagnosis, which may require internal positive controls or detection of multiple specific nucleic acid sequences within thousands or more routine samples 3. During the current COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, diagnostic labs around the world are utilizing this technology to identify infections 4.Sensitive diagnostic detection of pathogens from clinical samples using qRT-PCR can detect as little as ten or fewer copies of template DNA or RNA 5. Consequently, these assays require that all reagents – including oligonucleotides, fluorescent probes, enzymes and nucleotides – be free of contamination by pathogen-specific nucleic acids. As production of detection reagents and control templates has scaled up during the COVID-19 pandemic, there have been multiple reports of reagents from commercial suppliers of oligonucleotide probes and primers that produced amplification in nontemplate (NT)/nonsample control reactions, indicating background contamination by viral sequences (pers. comm.). These inadvertent contaminations may have been introduced through manipulation of reagents by asymptomatic infected individuals, or more likely by close proximity to laboratory production of SARS-CoV-2 nucleic acids.During the present COVID-19 pandemic, many research groups have redirected some focus toward assisting with diagnosis, or the development of therapies or vaccines. To support local diagnostic efforts, we organized a collaboration to produce test reagents, including enzymes, oligonucleotides and TaqMan probes specific for SARS-CoV-2. For production of oligonucleotides and probes, we used an ABI394 synthesizer, on which we produced primers for amplification of nucleic acids specific for the SARS-CoV-2 RNA-dependent RNA polymerase (RdRP) and E genes to detect the virus, in addition to the human RNAseP positive control 4,5. Initial oligonucleotides from our instrument produced results for detection of viral sequences comparable to those obtained with oligos purchased from commercial suppliers.To enable routine quality control and analysis of our test reagents, we synthesized positive control template nucleic acids for the RdRP and E gene target sequences, which were cloned into pSP72. Both template fragments were synthesized as six overlapping 30- to 60-nt oligonucleotides on the same ABI394 instrument as was used for production of the diagnostic oligos. The full approximately 200-nucleotide fragments were produced using a single round of assembly PCR, digested with restriction enzymes for sites included at the 5′ and 3′ ends and cloned into pSP72. Clones of these constructs were grown in miniprep cultures, and DNA was prepared and analyzed in rooms adjacent to open space housing the DNA synthesizer.Unexpectedly, the oligo primer sets synthesized immediately following construction and growth of the template plasmids failed quality control, in that they produced amplification with a cycle threshold (Ct) value of approximately 31 in no-templ
机译:定量聚合酶链反应(qPCR)是诊断微生物感染的重要常规工具[1]。该检测采用正向和反向寡核苷酸引物,通过热稳定的 DNA 聚合酶对病原体特异性核酸进行指数扩增。在每个循环中,可以通过双链DNA特异性荧光染料产生的荧光或与淬灭的寡核苷酸病原体特异性探针偶联的荧光染料的释放来检测靶序列的扩增[2]。双链 DNA 特异性染料(例如 SYBR、EVA Green)为监测特定序列的扩增提供了一种灵敏且廉价的选择,但通常仅限于检测每个反应的单个靶序列。相比之下,荧光标记的“TaqMan®”寡核苷酸探针允许“多重”,能够在单次反应中检测样品中的多个特定序列[3]。这种能力对于临床诊断尤为重要,临床诊断可能需要内部阳性对照或检测数千例或更多常规样本中的多个特异性核酸序列[3]。在当前由冠状病毒SARS-CoV-2引起的COVID-19大流行期间,世界各地的诊断实验室都在利用这项技术来识别感染[4]。使用qRT-PCR对临床样本中的病原体进行灵敏的诊断检测,可以检测到低至10个或更少的模板DNA或RNA拷贝[5]。因此,这些检测要求所有试剂(包括寡核苷酸、荧光探针、酶和核苷酸)均不受病原体特异性核酸的污染。随着 COVID-19 大流行期间检测试剂和对照模板的生产规模扩大,有多份报告称,寡核苷酸探针和引物的商业供应商的试剂在非模板 (NT)/非样品对照反应中产生扩增,表明病毒序列的背景污染(通讯)。这些无意的污染可能是通过无症状感染者操纵试剂引入的,或者更可能是由于靠近实验室生产SARS-CoV-2核酸而引入的。在当前的 COVID-19 大流行期间,许多研究小组已将一些重点转向协助诊断或开发疗法或疫苗。为了支持当地的诊断工作,我们组织了一项合作,生产检测试剂,包括针对 SARS-CoV-2 的酶、寡核苷酸和 TaqMan 探针。为了生产寡核苷酸和探针,我们使用了ABI394合成器,除了人RNAseP阳性对照外,我们还在其上生产了用于扩增SARS-CoV-2 RNA依赖性RNA聚合酶(RdRP)和E基因特异性核酸的引物,以检测病毒[4,5]。我们仪器的初始寡核苷酸产生的病毒序列检测结果与从商业供应商处购买的寡核苷酸获得的结果相当。为了能够对我们的测试试剂进行常规质量控制和分析,我们合成了 RdRP 和 E 基因靶序列的阳性对照模板核酸,并将其克隆到 pSP72 中。在用于生产诊断寡核苷酸的同一 ABI394 仪器上,将两个模板片段合成为六个重叠的 30 至 60 nt 寡核苷酸。使用单轮组装 PCR 生成完整的约 200 个核苷酸片段,用限制性内切酶消化 5' 和 3' 末端包含的位点并克隆到 pSP72 中。这些构建体的克隆在小型制备培养物中生长,并在容纳DNA合成器的开放空间附近的房间中制备和分析DNA。出乎意料的是,在模板质粒的构建和生长后立即合成的寡核苷酸引物组未能通过质量控制,因为它们在无温度下产生的扩增循环阈值(Ct)值约为31

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号