首页> 外文期刊>Ecological Modelling >Responses of European anchovy vital rates and population growth to environmental fluctuations: An individual-based modeling approach
【24h】

Responses of European anchovy vital rates and population growth to environmental fluctuations: An individual-based modeling approach

机译:欧洲an鱼重要生命率和人口增长对环境波动的响应:基于个体的建模方法

获取原文
获取原文并翻译 | 示例
           

摘要

A size-structured, bioenergetics model was implemented to examine the effects of short-term environmental changes on European anchovy, Engraulis encrasicolus, in the North-western Mediterranean Sea. The model approach was based on Dynamic Energy Budget (DEB) theory and details the acquisition and allocation of energy (Jd~(-1)) during an organisms' full life-cycle. Model calibration was achieved using biometric data collected from the Gulf of Lions between 2002 and 2011. Bioenergetics simulations successfully captured ontogenetic and seasonal growth patterns, including active growth in spring/summer, loss of mass in autumn/winter and the timing and amplitude of multi-batch spawning events. Scenario analysis determined that vital rates (growth and fecundity) were highly sensitive to short-term environmental changes. The DEB model provided a robust foundation for the implementation of an individual-based population model (IBM) in which we used to test the responses of intrinsic and density-independent population growth rates (r) to observed and projected environmental variability. IBM projections estimate that r could be reduced by as much as 15% (relative to that estimated under mean conditions) due to either a 5% (0.8°C) drop in temperature (due to a reduced spawning duration), a 18% (25mg zooplanktonm-3) depletion in food supply, a 30% increase in egg mortality rates, or with the phytoplankton bloom peaking 5 weeks earlier (in late-February/Winter). The sensitivity of r to short-term (1 year) and long-term (4-10 year) environmental changes were similar, highlighting the importance of first-year spawners. In its current form, the models presented here could be incorporated into spatially-explicit, higher-trophic (predator-prey and end-to-end ecosystem), larval-dispersal and toxicokinetic models or adapted to other short-lived foraging fish (clupeid) species.
机译:实施了大小结构化的生物能学模型,以研究短期环境变化对西北地中海欧洲European鱼Engraulis encrasicolus的影响。该模型方法基于动态能量预算(DEB)理论,详细介绍了生物整个生命周期中能量的获取和分配(Jd〜(-1))。使用从2002年至2011年从狮子湾收集的生物统计数据实现了模型校准。生物能学模拟成功捕获了个体发育和季节性生长模式,包括春季/夏季活跃的生长,秋季/冬季的质量损失以及多峰时间和振幅批量生成事件。方案分析确定,生命率(生长和繁殖力)对短期环境变化高度敏感。 DEB模型为基于个人的人口模型(IBM)的实施提供了坚实的基础,在该模型中,我们用来测试内在的和密度独立的人口增长率(r)对观察到的和预测的环境变异的响应。 IBM预测,由于温度下降5%(0.8°C)(由于产卵时间减少),r下降18%(相对于平均条件下的估计值),r可能减少15%(相对于平均条件下的估计值)。 25 mg浮游动物-3)食物供应枯竭,卵死亡率增加30%,或者浮游植物绽放高峰在5周前(2月下旬/冬季)达到峰值。 r对短期(1年)和长期(4-10年)环境变化的敏感性相似,突显了第一年产卵的重要性。以目前的形式,此处介绍的模型可以并入空间显性,高营养性(捕食者-猎物和端对端生态系统),幼虫扩散和毒代动力学模型,或适用于其他短寿命觅食鱼(clupeid) )的物种。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号