首页> 外文期刊>Ecological Modelling >How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model
【24h】

How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model

机译:生物钟和不断变化的环境条件如何决定南极磷虾(Euphausia superba)的本地种群增长和物种分布:一个概念模型

获取原文
获取原文并翻译 | 示例
           

摘要

The Southern Ocean ecosystem is characterized by extreme seasonal changes in environmental factors such as day length, sea ice extent and food availability. The key species Antarctic krill (Euphausia superba) has evolved metabolic and behavioural seasonal rhythms to cope with these seasonal changes. We investigate the switch between a physiological less active and active period for adult krill, a rhythm which seems to be controlled by internal biological clocks. These biological clocks can be synchronized by environmental triggers such as day length and food availability. They have evolved for particular environmental regimes to synchronize predictable seasonal environmental changes with important life cycle functions of the species. In a changing environment the time when krill is metabolically active and the time of peak food availability may not overlap if krill's seasonal activity is solely determined by photoperiod (day length). This is especially true for the Atlantic sector of the Southern Ocean where the spatio-temporal ice cover dynamics are changing substantially with rising average temperatures. We developed an individual-based model for krill to explore the impact of photoperiod and food availability on the growth and demographics of krill. We simulated dynamics of local krill populations (with no movement of krill assumed) along a south-north gradient for different triggers of metabolic activity and different levels of food availability below the ice. We also observed the fate of larval krill which cannot switch to low metabolism and therefore are likely to overwinter under ice. Krill could only occupy the southern end of the gradient, where algae bloom only lasts for a short time, when alternative food supply under the ice was high and metabolic activity was triggered by photoperiod. The northern distribution was limited by lack of overwintering habitat for krill larvae due to short duration of sea ice cover even for high food content under the ice. The variability of the krill's length-frequency distributions varied for different triggers of metabolic activity, but did not depend on the sea ice extent. Our findings suggest a southward shift of krill populations due to reduction in the spatial sea ice extent, which is consistent with field observations. Overall, our results highlight the importance of the explicit consideration of spatio-temporal sea ice dynamics especially for larval krill together with temporal synchronization through internal clocks, triggered by environmental factors (photoperiod and food) in adult krill for the population modelling of krill. (C) 2015 Elsevier B.V. All rights reserved.
机译:南部海洋生态系统的特征是环境因素的极端季节性变化,例如日长,海冰范围和食物供应。关键物种南极磷虾(Euphausia superba)已进化出代谢和行为季节性节律以应对这些季节性变化。我们调查了成年磷虾的生理上较不活跃的时期与活跃的时期之间的切换,这一节律似乎受内部生物钟控制。这些生物钟可以通过环境触发因素进行同步,例如日长和食物供应。它们已经针对特定的环境制度进行了进化,以使可预测的季节性环境变化与物种的重要生命周期功能同步。在不断变化的环境中,如果磷虾的季节性活动仅由光周期(天长)决定,则磷虾具有新陈代谢活动的时间和可食用高峰时间的时间可能不会重叠。对于南大西洋的大西洋地区尤其如此,其时空冰盖动态随着平均温度的升高而发生显着变化。我们开发了基于个体的磷虾模型,以探索光周期和食物供应对磷虾生长和人口统计的影响。我们模拟了沿南北梯度的当地磷虾种群(假设没有磷虾运动)的动力学,用于不同的代谢活动触发因素和冰下不同的食物供应水平。我们还观察到了幼体磷虾的命运,它们不能转换为低新陈代谢,因此很可能在冰下越冬。磷虾只能占据梯度的南端,藻类的繁殖只持续很短的时间,这时冰下的替代性食物供应量很高,光周期触发了新陈代谢活动。北部分布受限于磷虾幼虫的越冬栖息地,这是由于海冰覆盖时间短,即使冰下食物含量高也是如此。磷虾的长度-频率分布的可变性因代谢活动的不同触发而变化,但不取决于海冰范围。我们的发现表明,由于空间海冰面积的减少,磷虾种群向南移动,这与实地观察一致。总的来说,我们的结果强调了必须明确考虑时空海冰动力学的重要性,特别是对于幼体磷虾,以及通过成年磷虾的环境因素(光周期和食物)触发的内部时钟通过内部时钟进行时间同步的重要性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号