...
首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Dike formation, cataclastic flow, and rock fluidization during impact cratering: an example from the Upheaval Dome structure, Utah
【24h】

Dike formation, cataclastic flow, and rock fluidization during impact cratering: an example from the Upheaval Dome structure, Utah

机译:撞击坑形成过程中的堤防形成,碎裂流和岩石流化作用:犹他州Upheaval Dome结构的一个例子

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Patterns of deformation within the Upheaval Dome structure, Utah, provide important clues for assessing its possible impact origin. The complex structure of the innermost part of the dome, in particular of the White Rim Sandstone (WRS), indicated almost complete loss of internal coherence during deformation. the WRS displays extreme thickness variations, blind terminations and frequent embranchments at nodular-like points. This, together with discordant contacts to the country rock, shows that WRS builds up a dike network that was emplaced and injected during formation of the central dome. Microstructural analysis reveals that the macroscopically ductile appearance is achieved by distributed cataclastic flow. Beside intergranular fracturing, dislocation pile-ups, dislocation arrays and tangles indicate additional dislocation glide activity in quartz of WRS during deformation. Disseminated brittle fault zone networks postdate the cataliastic flow and represent the final deformation increments during formation of the central uplift. The distributed catacluastic flow in the sandstones was intimated by grain crushing, collapse of pore space, and subsequent intergranular shear. In accordance with experimental data for a similar sandstone (Berea sandstone), it is suggested that a high effective confining pressure, most likely in excess of 250 MPa, was necessary to cause this flow. At shallow crystal levels (maximum possible depth of burial of WRS is 3 km) such a high confining pressure can only be build up dynamically by impact processes. from deformation mechanisms, a shock wave attenuation to magnitudes below the Hugoniot elastic limit of quartz can be deduces and correlates with a burial of the studied sediments of 2-3 km at the time of the impact.
机译:犹他州剧变穹顶结构内的变形模式为评估其可能的冲击起源提供了重要的线索。穹顶最内部的复杂结构,尤其是白缘砂岩(WRS)的内部结构,表明变形期间内部连贯性几乎完全丧失。 WRS显示出极端的厚度变化,盲端和在结节状点的频繁分支。这与对乡村岩石的不和谐接触一起表明,WRS建立了一个堤防网络,该堤防网络在中央穹顶的形成过程中被植入并注入。微观结构分析表明,宏观韧性的出现是通过分布的碎裂流实现的。除晶间压裂外,位错堆积,位错阵列和缠结表明在变形过程中WRS石英中的附加位错滑移活动。弥散性的脆性断裂带网络延后了磁流体,代表了中央隆起形成过程中的最终变形增量。砂岩中的碎裂分布流受晶粒破碎,孔隙空间塌陷和随后的晶间剪切作用的影响。根据类似砂岩(Berea砂岩)的实验数据,建议要使这种流动需要很高的有效围压,很可能超过250 MPa。在较浅的晶体水平上(WRS的最大可能的埋藏深度为3 km),只能通过冲击过程动态地建立如此高的围压。从变形机制,可以推断出冲击波衰减到石英的Hugoniot弹性极限以下的幅度,并且与撞击时2-3 km的研究沉积物的埋葬有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号