...
首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Thermal-mechanical effects of low-temperature plasticity (the Peierls mechanism) on the deformation of a viscoelastic shear zone
【24h】

Thermal-mechanical effects of low-temperature plasticity (the Peierls mechanism) on the deformation of a viscoelastic shear zone

机译:低温可塑性(Peierls机制)对粘弹性剪切区变形的热力学效应

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We studied for the first time the effects of low-temperature plasticity on the formation of shear zones. A thermal-mechanical model has been developed for describing the shear deformation of Maxwell viscoelastic material with a rheology close to dry olivine. We employed a one-dimensional model with a half-width of L deforming under a constant velocity U at the boundary, and the spatially-averaged strain rate U/L was set to O(10~(-14)) s~(-1). In addition to diffusion and power-law creep, we included deformation by low-temperature plasticity, called the Peierls mechanism, which is significant at low temperatures and has a strong exponential dependence on the stress. When a sufficient magnitude of heat is generated by the rapid conversion from elastically-stored energy into viscous dissipation, thermal instability takes place and the deformation localizes in a narrow region. By comparing the condition for thermal instability, we found that the low-temperature plasticity inhibits be development of thermal instability in shear zones in case of constant strain rate. The Peierls mechanism enhances deformation at a significantly lower stress compared to the rheology with solely diffusion creep and power-law creep. The enhanced deformation by low-temperature plasticity produces lower amount of dissipative heating, and thus stabilizes the shear zone. Comparing the stability between constant strain-rate and constant stress boundary conditions, we found that the Peierls mechanism exerts an opposite destabilizing effect in the case of constant stress. For dry olivine rheology and realistic magnitude of the strain rate, the effect of low-temperature plasticity is significant for temperatures between around 800 K and 1000 K. This finding suggests that the low-temperature plasticity may be crucial in determining the thermal-mechanical stability in the
机译:我们首次研究了低温可塑性对剪切区形成的影响。已经建立了热力学模型来描述流变学接近干燥橄榄石的麦克斯韦粘弹性材料的剪切变形。我们采用一维模型,在边界上以等速U变形L的半角宽度为L,并将空间平均应变率U / L设置为O(10〜(-14))s〜(- 1)。除了扩散和幂律蠕变以外,我们还包括低温可塑性引起的变形(称为Peierls机理),该现象在低温下很明显,并且对应力具有很强的指数依赖性。当通过从弹性存储的能量到粘性耗散的快速转换产生足够量的热量时,会发生热不稳定性,并且变形会局限在狭窄的区域。通过比较热不稳定性的条件,我们发现在恒定应变率的情况下,低温可塑性抑制了剪切区热不稳定性的发展。与仅具有扩散蠕变和幂律蠕变的流变学相比,Peierls机理在显着较低的应力下增强了变形。低温可塑性增强的变形会产生较少的耗散热量,从而稳定剪切区。比较恒定应变率和恒定应力边界条件之间的稳定性,我们发现在恒定应力的情况下,Peierls机理发挥了相反的去稳定作用。对于干橄榄石流变学和实际的应变速率,低温可塑性对温度在800 K至1000 K之间具有显着影响。这一发现表明,低温可塑性对于确定热机械稳定性可能至关重要。在里面

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号