首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Reaction-driven cracking during retrograde metamorphism: Olivine hydration and carbonation
【24h】

Reaction-driven cracking during retrograde metamorphism: Olivine hydration and carbonation

机译:逆行变质过程中的反应驱动裂纹:橄榄石水合和碳酸化

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Retrograde metamorphism (mineral hydration, carbonation and oxidation) is important in controlling the composition and rheology of the Earth's crust and upper mantle, particularly along tectonic plate margins, and in proposed mechanisms for geothermal power generation and engineered, geological carbon storage. Retrograde processes can lead to an increase in solid mass and volume, or can be balanced by host phase dissolution at constant solid volume. In turn, solid volume changes could reduce permeability and reactive surface area, and/or lead to host rock deformation, via fracture and frictional sliding or viscous flow. Which of these outcomes emerges in specific cases is determined in part by the "crystallization pressure", which creates local gradients in pressure around growing crystals, and thus a differential stress. We develop thermodynamic and mineral physics estimates of the crystallization pressure and differential stress resulting from volume changes during olivine hydration (serpentinization) and carbonation. Because olivine is so far from equilibrium with fluids near the surface, the stress due to serpentinization and/or carbonation may exceed 300. MPa at temperatures up to 200. °C or more, greater than required to fracture rocks and cause frictional failure in the upper 10. km of the Earth. Provided that fluid access is initiated, for example along pre-existing fractures, the volume change due to hydration and carbonation can cause fracture formation and dilation, maintaining or increasing permeability and reactive surface energy in a positive feedback mechanism.
机译:逆行变质作用(矿物水合作用,碳酸化作用和氧化作用)对于控制地壳和上地幔的成分和流变学(尤其是沿构造板块边缘)以及拟议的地热发电和工程化地质碳存储机制至关重要。逆行过程可以导致固体质量和体积的增加,或者可以通过以恒定固体体积溶解主体相来平衡。反过来,固体体积的变化可能会由于裂缝和摩擦滑动或粘性流而降低渗透率和反应表面积,和/或导致主体岩石变形。在特定情况下出现这些结果中的哪一个部分取决于“结晶压力”,该压力会在生长的晶体周围产生局部压力梯度,从而产生不同的应力。我们开发了橄榄石水合(蛇纹石化)和碳酸化过程中由于体积变化而引起的结晶压力和应力差的热力学和矿物物理估计。由于橄榄石远不能与地表附近的流体保持平衡,因此在高达200.°C或更高的温度下,蛇纹石化和/或碳酸化所产生的应力可能会超过300. MPa,大于使岩石破裂并导致岩石中摩擦破坏所需的应力。地球上方10公里。假设例如沿先前存在的裂缝开始流体进入,则由于水合和碳化作用引起的体积变化会导致裂缝形成和膨胀,从而在正反馈机制中维持或增加渗透率和反应性表面能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号