首页> 外文学位 >Nanoscale analysis for the San Carlos olivine carbonation reaction mechanism (Arizona).
【24h】

Nanoscale analysis for the San Carlos olivine carbonation reaction mechanism (Arizona).

机译:纳米级分析,用于圣卡洛斯橄榄石碳酸化反应机理(亚利桑那州)。

获取原文
获取原文并翻译 | 示例

摘要

Carbon sequestration by reacting Mg and Ca containing minerals with CO 2 to form carbonates has many unique advantages. The reaction is thermodynamically favorable and occurs naturally, the amount of minerals is abundant, and carbonate products are stable. However, little is known so far, regarding the fundamental characteristics of CO2 mineral reactions, to allow a viable CO 2 mineral sequestration scheme to be developed.; The dissolution of olivine without physical activation was investigated to understand the reacted surface and olivine/reaction layer interface. The surface morphology changes between rinsed olivine after reaction and ultrasonicated reacted olivine. This indicated that the formation of a silica reaction layer that cracks and exfoliates from the olivine substrate. The structure and composition of the reaction layer (RL) reveals that amorphous SiO2 is the dominant phase with MgCO3 nanoparticles are embedded in the RL. However, most magnesite forms in the solution.; The chemical reactions with the liquid solution, structural transformation between olivine and RL, and mechanical development of RL must be understood. The driving force for the reaction is that Mg and O transport across olivine/RL interface and through the reaction layer. Therefore, the olivine structure transforms to amorphous SiO2 by a diffusion process, and carbon species penetrate and form magnesite particles in the RL. The stresses from the molar volume differences between reactants and products concentrate in the thin RL, cause cracking, curling, and spalling from substrate. Stress calculation shows the distribution of stress along the thin reaction layer. The general mechanism model describes that attacking solution into olivine, Mg and O transportation, reaction layer formation, the breaking of pieces of the RL by stresses.; The agitation of the RL by mechanical abrasion helps with removing the diffusion limiting SiO2 RL in order to promote further dissolution of the inner Mg containing layer of olivine. The reaction layer itself seems to be slightly oxygen deficient SiO2 using electron energy loss nanospectroscopy. In addition, hydrogen may penetrate into the reaction layer during carbonation, which changes the chemical bonding status of near surface of the RL.
机译:通过使含Mg和Ca的矿物质与CO 2反应形成碳酸盐而进行碳固存具有许多独特的优势。该反应在热力学上是有利的并且是自然发生的,矿物质的量丰富,并且碳酸盐产物是稳定的。然而,到目前为止,关于CO 2矿物反应的基本特征,人们知之甚少,无法开发出可行的CO 2矿物螯合方案。研究了没有物理活化的橄榄石溶解情况,以了解反应后的表面和橄榄石/反应层界面。在反应后冲洗的橄榄石和超声反应的橄榄石之间,表面形态发生了变化。这表明形成了二氧化硅反应层,其从橄榄石基底上破裂并剥落。反应层(RL)的结构和组成表明,无定形SiO2是主要相,MgCO3纳米颗粒嵌入RL中。但是,溶液中大多数菱镁矿形式。必须了解与液体溶液的化学反应,橄榄石和RL之间的结构转变以及RL的机械发展。反应的驱动力是Mg和O穿过橄榄石/ RL界面并穿过反应层传输。因此,橄榄石结构通过扩散过程转变为无定形SiO2,碳物质渗透并形成RL中的菱镁矿颗粒。反应物和产物之间的摩尔体积差异引起的应力集中在稀薄的RL中,导致基材破裂,卷曲和剥落。应力计算显示应力沿着薄反应层的分布。通用机理模型描述了侵蚀溶液侵入橄榄石,Mg和O的运输,反应层的形成,应力导致RL碎片的破坏。通过机械磨擦搅动RL有助于去除限制扩散的SiO2 RL,从而促进橄榄石内部含Mg层的进一步溶解。使用电子能量损失纳米光谱法,反应层本身似乎是稍微缺氧的SiO 2。此外,在碳化过程中,氢可能会渗入反应层,从而改变RL附近表面的化学键状态。

著录项

  • 作者

    Kim, Youngchul.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Geotechnology.; Geology.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地质学;地质学;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号