首页> 外文会议>28th International Technical Conference on Coal Utilization amp; Fuel Systems Vol.1 Mar 9-13, 2003 Clearwater, Florida, USA >Investigations of the Mechanisms that Govern Carbon Dioxide Sequestration via Aqueous Olivine Mineral Carbonation
【24h】

Investigations of the Mechanisms that Govern Carbon Dioxide Sequestration via Aqueous Olivine Mineral Carbonation

机译:通过橄榄石矿物碳酸化作用控制二氧化碳螯合的机理的研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Coal, in particular, and fossil fuels, in general, are well positioned to supply the world's energy needs for centuries to come if the environmental challenges associated with anthropogenic carbon dioxide emissions can be overcome. Carbon dioxide sequestration is being actively pursued as an option to reduce CO_2 emissions, while still enjoying the advantages of low-cost fossil fuel energy. Mineral carbonation is an intriguing CO_2 sequestration candidate technology, which provides environmentally benign and geologically stable CO_2 disposal in the form of mineral carbonates. Importantly, such disposal bypasses many long-term storage problems by (ⅰ) providing permanent containment, (ⅱ) avoiding adverse environmental consequences, and (ⅲ) essentially eliminating the need for continuous site monitoring. The primary challenge for viable sequestration process development is reducing process cost. Enhancing carbonation rates is crucial to reducing cost. This is the primary focus of the CO_2 Mineral Sequestration Working Group managed by Fossil Energy at DOE. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg_2SiO_4) is a leading process candidate, which converts CO_2 into the environmentally benign mineral magnesite (MgCO_3). As olivine carbonation is exothermic, it offers intriguing low-cost potential. Recent studies at the Albany Research Center have found aqueous-solution carbonation is particularly promising. Cost-effectively enhancing carbonation reactivity is central to reducing process cost. Many of the mechanisms that impact reactivity occur at the solid/solution interface. Understanding these mechanisms is central to the engineering of processes to enhance carbonation reactivity and lower cost. Herein, we describe our investigations of mineral carbonation reaction mechanisms for a model phase-pure olivine. Aqueous-solution olivine carbonation was discovered to be a complex process associated with passivating silica layer formation and cracking, silica surface migration, olivine etch pit formation, transfer of the Mg and Fe in the olivine into the product carbonate, and the nucleation and growth of magnesite crystals on/in the silica/olivine reaction matrix. These phenomena occur in concert with the large solid volume changes that accompany the carbonation process, which can substantially impact carbonation reactivity.
机译:如果可以克服与人为二氧化碳排放相关的环境挑战,那么煤炭尤其是化石燃料通常可以满足未来几个世纪的世界能源需求。在减少二氧化碳排放量的同时,仍积极寻求二氧化碳封存,同时仍享有低成本化石燃料能源的优势。矿物碳酸化是一种有趣的CO_2固存候选技术,它以矿物碳酸盐的形式提供对环境无害且地质稳定的CO_2处理。重要的是,此类处置通过(ⅰ)提供永久性围护,(ⅱ)避免了不利的环境后果,以及(ⅲ)消除了持续进行现场监控的需要,从而绕开了许多长期存储问题。可行的隔离过程开发的主要挑战是降低过程成本。提高碳化速率对于降低成本至关重要。这是美国能源部化石能源管理的CO_2矿物固存工作组的主要重点。广泛存在的矿物橄榄石(例如镁橄榄石,Mg_2SiO_4)的碳酸化是主要的候选工艺,它将CO_2转化为对环境无害的菱镁矿(MgCO_3)。由于橄榄石碳酸是放热的,它提供了诱人的低成本潜力。奥尔巴尼研究中心的最新研究发现水溶液碳酸化特别有希望。具有成本效益的增强碳酸化反应性对于降低工艺成本至关重要。影响反应性的许多机制都发生在固/溶液界面。了解这些机制对于提高碳酸化反应性和降低成本的工艺工程至关重要。在这里,我们描述了我们对模型相纯橄榄石的矿物碳酸化反应机理的研究。发现水溶液橄榄石碳酸化是一个复杂的过程,与钝化硅石层的形成和破裂,硅石表面迁移,橄榄石蚀刻坑的形成,橄榄石中的Mg和Fe转移到产物碳酸盐中以及硅的成核和生长有关。二氧化硅/橄榄石反应基质上/中的菱镁矿晶体。这些现象与伴随碳酸化过程的大的固体体积变化一致地发生,这可以显着影响碳酸化反应性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号