首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Systolic and Non-Systolic Scalable Modular Designs of Finite Field Multipliers for Reed–Solomon Codec
【24h】

Systolic and Non-Systolic Scalable Modular Designs of Finite Field Multipliers for Reed–Solomon Codec

机译:Reed-Solomon编解码器有限场乘法器的收缩压和非收缩压可扩展模块化设计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present efficient algorithms for modular reduction to derive novel systolic and non-systolic architectures for polynomial basis finite field multipliers over $GF(2^{m})$ to be used in Reed–Solomon (RS) codec. Using the proposed algorithm for unit degree reduction and optimization of implementation of the logic functions in the processing elements (PEs), we have derived an efficient bit-parallel systolic design for finite field multiplier which involves nearly two-thirds of the area-complexity of the existing design having the same time-complexity. The proposed modular reduction algorithms are also used to derive efficient non-systolic serial/parallel designs of field multipliers over $GF(2^{8})$ with different digit-sizes, where the critical path and the hardware-complexity are further reduced by optimizing the implementation of modular reduction operations and finite field accumulations. The proposed bit-serial design involves nearly 55 of the minimum of area, and half the minimum of area-time complexity of the existing bit-serial designs. Similarly, the proposed digit-serial/parallel designs involve significantly less area, and less area-time complexities compared with the existing designs of the same digit-size. By parallel modular reduction through multiple degrees followed by appropriate logic-level sub-expression sharing; a hardware-efficient regular and modular form of a balanced-tree bit-parallel non-systolic multiplier is also derived. The proposed bit-parallel non-systolic pipelined design involves less than 65 of the area and nearly two-thirds of the area-time complexity of the existing bit-parallel design for a RS codec, while the non-pipelined form offers nearly 25 saving of area with less time-complexity.
机译:在本文中,我们提出了有效的模约简算法,以推导出新的多项式基有限场乘法器的收缩期和非收缩期架构,用于 $GF Reed-Solomon (RS) 编解码器。利用所提出的单位度降简算法和处理单元(PEs)中逻辑函数实现的优化算法,推导出了一种高效的有限场乘法器位并行脉动设计,其面积复杂度几乎是现有设计中具有相同时间复杂度的三分之二。所提出的模块化约简算法还用于推导具有不同数字大小的场乘法器在$GF(2^{8})$上的高效非收缩期串行/并行设计,通过优化模块化约简运算和有限场累加的实现,进一步降低了临界路径和硬件复杂度。所提出的位串行设计涉及的最小面积几乎是现有位串行设计的近 55%,最小区域时间复杂度是其一半。同样,与相同数字大小的现有设计相比,所提出的数字串行/并行设计涉及的面积和面积时间复杂性要小得多。通过多个程度的并行模缩减,然后进行适当的逻辑级子表达式共享;还推导了一种硬件效率高的规则和模块化形式的平衡树位并行非收缩期乘法器。所提出的位并行非收缩流水线设计涉及的面积不到 RS 编解码器现有位并行设计的面积不到 65%,面积时间复杂度接近三分之二,而非流水线形式可节省近 25% 的面积,时间复杂度更低。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号