...
首页> 外文期刊>Ecological Applications >Gas exchange, leaf nitrogen, and growth efficiency of Populus tremuloides in a CO2-enriched atmosphere
【24h】

Gas exchange, leaf nitrogen, and growth efficiency of Populus tremuloides in a CO2-enriched atmosphere

机译:富CO2大气中胡杨的气体交换,叶氮和生长效率

获取原文
获取原文并翻译 | 示例
           

摘要

Predicting forest responses to rising atmospheric CO2 will require an understanding of key feedbacks in the cycling of carbon and nitrogen between plants and soil microorganisms, We conducted a study for 2.5 growing seasons with Populus tremuloides grown under experimental atmospheric CO2 and soil-N-availability treatments. Our objective was to integrate the combined influence of atmospheric CO2 and soil-N availability on the flow of C and N in the plant-soil system and to relate these processes to the performance of this widespread and economically important tree species. Here we consider treatment effects on photosynthesis and canopy development and the efficiency with which this productive capacity is translated into aboveground, harvestable yield. We grew six P, tremuloides genotypes at ambient (35 Pa) or elevated (70 Pa) CO2 and in soil of low or high N mineralization rate at the University of Michigan Biological Station, Pellston, Michigan, USA (45 degrees 35' N, 84 degrees 42' W). In the second year of growth, net CO2 assimilation rate was significantly higher in elevated-CO2 compared to ambient-CO2 plants in both soil-N treatments, and we found little evidence for photosynthetic acclimation to high CO2. In the third year, however, elevated-CO2 plants in low-N soil had reduced photosynthetic capacity compared to ambient-CO2, low-N plants, Plants in high-N sail showed the opposite response, with elevated-CO2 plants having higher photosynthetic capacity than ambient-CO2 plants. Net CO2 assimilation rate was linearly related to leaf N concentration (log:log scale), with identical slopes but different intercepts in the two CO2 treatments, indicating differences in photosynthetic N-use efficiency, Elevated CO2 increased tissue dark respiration in high-N soil (+22%) but had no significant effect in low-N soil(+9%). There were no CO2 effects on stomatal conductance. At the final harvest, stem biomass and total leaf area increased significantly due to CO2 enrichment in high-N but not in low-N soil. Treatment effects on wood production were largely attributable to changes in leaf area, with no significant effects on growth efficiency, We conclude that harvest intervals for P. tremuloides on fertile sites will shorten with rising atmospheric CO2, but that tree size at canopy closure may be unaffected. [References: 63]
机译:预测森林对大气CO2升高的反应将需要了解植物与土壤微生物之间碳氮循环的关键反馈。我们进行了2.5个生长季节的研究,研究了在实验大气CO2和土壤N有效性处理下生长的杨树。我们的目标是整合大气中的CO2和土壤N的可用性对植物-土壤系统中C和N流动的综合影响,并将这些过程与这种广泛且具有经济意义的树种的性能联系起来。在这里,我们考虑处理对光合作用和冠层发育的影响,以及将这种生产能力转化为地上可收获产量的效率。我们在美国密歇根州佩尔斯顿的密歇根大学生物站大学(环境温度为45度35',在环境(35 Pa)或升高(70 Pa)的CO2和低或高N矿化率的土壤中生长了6种P,tremuloides基因型。 84度42'W)。在生长的第二年,在两种土壤N处理下,升高的CO2的净CO2同化率均比环境CO2的植株高得多,而且我们几乎没有证据表明光合作用适应高CO2。然而,在第三年中,低氮土壤中的高CO2植物与环境二氧化碳,低氮植物相比的光合能力降低。高氮帆中的植物表现出相反的反应,高碳CO2植物的光合能力更高。容量高于环境二氧化碳工厂。净CO2同化率与叶片N浓度呈线性相关(log:log比例),两种CO2处理具有相同的斜率但截距不同,表明光合氮利用效率存在差异,CO2升高会增加高氮土壤中的组织暗呼吸。 (+ 22%),但对低氮土壤(+ 9%)则无明显影响。 CO2对气孔导度没有影响。在最终收获时,由于高氮土壤中的二氧化碳富集,茎生物量和总叶面积显着增加,而低氮土壤中则没有。处理对木材产量的影响主要归因于叶面积的变化,而对生长效率没有显着影响。我们得出结论,随着大气CO2浓度的升高,富营养区的P. tremuloides的采伐间隔将缩短,但冠层关闭时的树木大小可能是不受影响。 [参考:63]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号