...
首页> 外文期刊>Irrigation Science >Spatially distributed monthly reference evapotranspiration derived from the calibration of Thornthwaite equation: a case study, South of Iran
【24h】

Spatially distributed monthly reference evapotranspiration derived from the calibration of Thornthwaite equation: a case study, South of Iran

机译:从Thornthwaite方程的校准得出的空间分布每月参考蒸散量:伊朗南部的案例研究

获取原文
获取原文并翻译 | 示例
           

摘要

The Penman-Monteith equation is the most common method for estimating reference crop evapotranspiration (ET sub(o)). Using this method reqiures many different meteorological data, yet few stations with adequate meteorological data may exist in a region. Setting up a station that records the required data for Penman-Monteith equation is expensive. Alternatively, the Thornthwaite equation is a simpler method for estimating ET sub(o) since it is a temperature-based method. In this study, the Thornthwaite equation was spatially calibrated based on the Penman-Monteith method (as the standard and reference method to compute ET sub(o)) for every month of the year, using the meteorologica data of seven synoptic weather stations in Fars province, and seven synoptic stations outside the Fars province. The Thornthwaite equation using effective temperature that has been introduced recently in other studies was used (Camargo et al. in Revista Brasileira de Agrometeorologica 7:251-257, 1999). For this purpose a calibration coefficient k must be determined. The results of the spatial and temporal calibration of the new approach using the Thornthwaite equation showed that for each station different k values should be used monthly. Generally, the k values fluctuated between 0.55 and 1.12, and the mean RMSE for all stations was less than 1 mm day super(-1), which showed good and reliable agreement between the ET sub(o) estimations obtained from the Penman-Monteith and calibrated Thornthwaite equations. Depending on the geographical location of each station, spatial distribution maps of monthly k values were created for the study area using the inverse distance weighting (IDW) interpolation method. It is therefore possible to estimate monthly ET sub(o) using the appropriate k map and the Thornthwaite equation for different regions of study area instead of using the Penman-Monteith method. This case study showed that the same analysis might be used for the other parts of the country or any part of the world and would result in efficient scheduling of water resources for agriculture.
机译:Penman-Monteith方程是估算参考作物蒸散量(ET sub(o))的最常用方法。使用此方法需要许多不同的气象数据,但是在一个区域中可能很少有具有足够气象数据的台站。建立一个站来记录Penman-Monteith方程所需的数据非常昂贵。另外,由于Thornthwaite方程是基于温度的方法,因此它是估算ET sub(o)的较简单方法。在这项研究中,Thornthwaite方程在一年中的每个月基于Penman-Monteith方法(作为计算ET sub(o)的标准和参考方法)在空间上进行了校准,并使用了Fars的七个天气观测站的气象学数据省和Fars省以外的七个天气站。使用了在其他研究中最近引入的使用有效温度的Thornthwaite方程(Camargo等人,在Revista Brasileira de Agrometeorologica 7:251-257,1999)。为此,必须确定校准系数k。使用Thornthwaite方程对新方法进行时空校准的结果表明,对于每个站,应每月使用不同的k值。通常,k值在0.55至1.12之间波动,并且所有站点的平均RMSE均小于1毫米天super(-1),这表明从Penman-Monteith获得的ET sub(o)估计值之间具有良好而可靠的一致性和校准的Thornthwaite方程。根据每个站点的地理位置,使用反距离权重(IDW)插值方法为研究区域创建了每月k值的空间分布图。因此,有可能使用适当的k图和研究区域不同区域的Thornthwaite方程,而不是使用Penman-Monteith方法,估计每月的ET sub(o)。该案例研究表明,相同的分析可能用于该国其他地区或世界任何地区,并将导致农业水资源的高效调度。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号