首页> 外文期刊>International Journal of Solids and Structures >An improved atomistic simulation based mixed-mode cohesive zone law considering non-planar crack growth
【24h】

An improved atomistic simulation based mixed-mode cohesive zone law considering non-planar crack growth

机译:基于改进的原子模拟的考虑非平面裂纹扩展的混合模式内聚区定律

获取原文
获取原文并翻译 | 示例
           

摘要

A novel and improved atomistic simulation based cohesive zone law characterizing interfacial debonding is developed which explicitly accounts for the non-planarity of the crack propagation. Group of atoms in the simulation constituting cohesive zones which are used to obtain local stress and crack opening displacement data are determined dynamically during the non-planar crack growth as they cannot be determined apriori. The methodology is used to study the debonding of Σ5 (2 1 0)/[0 0 1] symmetric tilt grain boundary interface in a Cu bicrystal under several mixed mode loading conditions. Simulations show that such bicrystalline specimen exhibits three types of energy dissipative mechanisms - shear coupled GB migration (SCM) away from the crack-tips, change in spacial orientation of GB structural units rendering highly disordered grain boundary near the crack tips and brittle intergranular fracture. Which combination of these three deformation mechanism will be active influencing the degree of non-planarity of the crack propagation at various stages of loading depends on the loading mode-mixity. As the ratio of shear component of the loading parallel to the GB plane and normal to the tilt axis with respect to the normal loading increases (thereby increasing the mode-mixity), overall strain-to-failure also increases and SCM tends to become the dominant deformation mechanism. Through this framework, analytical functional forms and parameters describing cohesive laws for both normal and shear traction as a function of the mode-mixity of the loading and crack opening displacement are predicted.
机译:提出了一种新颖且改进的基于原子模拟的改进的基于界面粘结的内聚区定律,该定律明确地解释了裂纹扩展的非平面性。由于无法先验地确定,在非平面裂纹扩展过程中动态确定了构成凝聚区的模拟中用于获得局部应力和裂纹开口位移数据的原子组。该方法用于研究铜双晶体在几种混合模式加载条件下Σ5(2 1 0)/ [0 0 1]对称倾斜晶界界面的剥离。模拟表明,这种双晶试样表现出三种类型的能量耗散机制-远离裂纹尖端的剪切耦合GB迁移(SCM),GB结构单元空间取向的变化导致裂纹尖端附近的晶界高度无序和脆性晶间断裂。这三种变形机制中的哪种组合会有效影响载荷在各个阶段的裂纹扩展的非平面度,取决于载荷模式的混合度。随着平行于GB平面且垂直于倾斜轴的载荷的剪切分量相对于法向载荷的比率增加(从而增加了模式混合),总的应变破坏也随之增加,SCM趋于成为主导变形机制。通过该框架,可以预测描述法向和剪切力的内聚规律的解析功能形式和参数,这些内聚规律是载荷和裂纹张开位移的模式混合的函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号