首页> 外文学位 >Cohesive zone model for carbon nanotube adhesive simulation and fracture/fatigue crack growth.
【24h】

Cohesive zone model for carbon nanotube adhesive simulation and fracture/fatigue crack growth.

机译:用于碳纳米管粘合剂模拟和断裂/疲劳裂纹扩展的内聚区模型。

获取原文
获取原文并翻译 | 示例

摘要

The Cohesive Zone Model (CZM) describes material separation with a traction-separation law and links the micro-structural failure mechanism to the continuum deformation field. The evolvement of the CZM and its specific features were introduced in the first Chapter of this dissertation and followed by applications for interface decohesion and crack growth study.;Chapter II adopted a bilinear CZM for description of the decohesion properties of the innovative carbon nanotube (CNT) dry adhesive. Macroscopic modeling of the uncoupled normal and shear adhesive behaviors were implemented using finite element method. The cohesive zone model completes a multi-scale modeling scheme together with coarse grained molecular dynamics (CGMD).;Three-dimensional simulations of quasi-static fracture process were studied next by formulating an exponential cohesive law. Crack growth under monotonic loading was modeled and cohesive parameters were calibrated by comparing with experiments. The CZM simulation captured the crack initiation as well as the process of crack propagation.;A damage-updated irreversible cohesive law was formulated in Chapter IV for simulations of cyclic crack growth. Material degradation was described with a damage evolution mechanism, revealing the history dependence of fatigue crack growth. The irreversible CZM was verified through one-element model under load-controlled and iv displacement-controlled fatigue loading and was further validated with fatigue crack growth simulations for different specimen modes. Simulation results captured the gradual damage accumulation and stable fatigue crack propagation, consistent with the power law method.;Further application of the irreversible CZM for overload effect during fatigue crack propagation was presented in Chapter V. Stress redistribution caused by the overload in a compact-tension-shear (CTS) specimen was investigated. Fatigue crack growth retardation was studied in terms of overload ratios and the mode of the overload. A damage extrapolation scheme was formulated for the high-cycle fatigue loading and greatly reduced the computation cost.;The last chapter investigated crack path deviation phenomena with possible CZM simulation approaches. Numerical issues and mesh-related convergence problem were referred for future investigation.
机译:内聚力区模型(CZM)使用牵引力-分离定律描述材料分离,并将微观结构破坏机制与连续变形场联系起来。在本论文的第一章中介绍了CZM的演变及其具体特征,随后将其用于界面脱粘和裂纹扩展研究。第二章采用双线性CZM描述了创新型碳纳米管(CNT)的脱粘性能。 )干胶。使用有限元方法对分离的法向和剪切粘结行为进行了宏观建模。内聚力区模型与粗粒分子动力学(CGMD)一起完成了一个多尺度的建模方案。通过拟定指数内聚规律,研究了准静态断裂过程的三维模拟。对单调加载下的裂纹扩展进行了建模,并通过与实验的比较来校准内聚参数。 CZM仿真捕获了裂纹的萌生以及裂纹扩展的过程。在第四章​​中,建立了更新损伤的不可逆内聚规律,以模拟循环裂纹的扩展。用损伤演化机制描述了材料的降解,揭示了疲劳裂纹扩展的历史依赖性。通过单元素模型在载荷控制和iv位移控制的疲劳载荷下验证了不可逆CZM,并通过疲劳裂纹扩展模拟对不同样本模式进行了验证。仿真结果捕捉到了渐进的损伤累积和稳定的疲劳裂纹扩展,与幂律法一致。第五章介绍了不可逆CZM在疲劳裂纹扩展过程中的过载效应的进一步应用。拉伸剪切(CTS)标本进行了研究。从过载率和过载方式的角度研究了疲劳裂纹的扩展。提出了一种针对高周疲劳载荷的损伤外推方案,大大降低了计算成本。最后一章采用可能的CZM仿真方法研究了裂纹路径偏差现象。数值问题和与网格相关的收敛问题被引用以供将来研究。

著录项

  • 作者

    Jiang, Haodan.;

  • 作者单位

    The University of Akron.;

  • 授予单位 The University of Akron.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号