...
首页> 外文期刊>International Journal of Solids and Structures >Characterisation of materials subjected to large strains by inverse modelling based on in-plane displacement fields
【24h】

Characterisation of materials subjected to large strains by inverse modelling based on in-plane displacement fields

机译:基于面内位移场的逆模型表征承受大应变的材料

获取原文
获取原文并翻译 | 示例
           

摘要

A method for characterisation of materials subjected to large strains beyond the levels when plastic instability occurs in standard tension tests is presented. Thin sheets of two types of hot-rolled steel are subjected to tension loading until fracture occurs. The deformation process is captured with a digital camera and by digital speckle photography (DSP) in-plane pointwise displacement fields are obtained. By numerical differentiation and assuming plastic incompressibility the equivalent plastic strain is determined. The characterisation performed in this paper consists of estimating material parameters in two constitutive models. These models are a piecewise linear plasticity model and a parabolic hardening model. By using inverse modelling including finite element analyses (FEA) of the tension tests the material parameters are adjusted to achieve a minimum in a so-called objective function. The objective function is basically a least-square functional based on the difference between the experimental and FE-calculated displacement and strain fields. Due to the large deformations an adaptive meshing technique is used in order to avoid highly distorted elements. The DSP-technique provided measurements, where the uncertainty of the equivalent plastic strain varied between 0.0015 and 0.0056. The maximum obtained strain was approximately 0.8. The true stress-strain curves based on the estimated parameters are validated in the low strain region by comparison with curves from standard tension tests. (C) 2004 Elsevier Ltd. All rights reserved.
机译:提出了一种表征材料的方法,该材料可承受超过标准拉伸试验中出现塑料不稳定性时承受的较大应变的材料。对两种类型的热轧钢薄板施加拉力,直到发生断裂。用数码相机捕获变形过程,并通过数字散斑摄影(DSP)获得平面内点向位移场。通过数值微分并假设塑性不可压缩,可以确定等效塑性应变。本文进行的表征包括在两个本构模型中估算材料参数。这些模型是分段线性可塑性模型和抛物线硬化模型。通过使用包括拉伸测试的有限元分析(FEA)的逆模型,可以对材料参数进行调整,以在所谓的目标函数中实现最小值。根据实验和有限元计算的位移和应变场之间的差异,目标函数基本上是最小二乘函数。由于变形较大,因此使用自适应网格技术来避免高度变形的元素。 DSP技术提供了测量,等效塑性应变的不确定度在0.0015至0.0056之间变化。获得的最大应变约为0.8。通过与来自标准拉伸试验的曲线进行比较,可以在低应变区域验证基于估计参数的真实应力-应变曲线。 (C)2004 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号